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Abstract 

An investigation of the structural and vibrational information of organic, hybrid 

organometallic and inorganic species was conducted using solid-state density functional theory 

(DFT). In this work the solid state DFT modeling was accomplished using the CRYSTAL09 

code to simulate the geometries and vibrational modes of a variety of systems. These studies 

included: (1) the investigation of three polymorphs of vanadium phosphate, (2) three studies 

involving the use of 5-(4-pyridyl)tetrazole, and lastly (3) the crystal structure and simulation of 

α,α,α′,α′-tetrabromo-p-xylene. The studies involving 5-(4-pyridyl)tetrazole are comprised of (a) 

the comparison of a new polymorph to previously published crystallographic information of the 

free base 5-(4-pyridyl)tetrazole, (b) the comparison of two hydrohalide salts of 5-(4-

pyridyl)tetrazole, and lastly, (c) comparing three isomorphous transition metal complexes with               

5-(4-pyridyl)tetrazole as a ligand. 

In the majority of these systems, with the exception of the polymorphs of vanadium 

phosphate, terahertz (THz) spectroscopy was used to probe the intermolecular interactions in 

these molecular crystals. These studies aim to increase the understanding of what effect subtle 

structural, compositional, or packing differences have on the vibrational normal modes, in 

particular in the region from 0-100 cm-1 known as the terahertz region.  

  It was found that subtle differences in the structure, composition, or packing could 

have large and varying effects on the vibrational modes, especially in the terahertz region. In 

particular, there are no universal trends in the shifting of vibrational frequency; however, the 

nature of the normal mode has the greatest effect when comparing systems that have 

compositional differences.  
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1.1     Introduction 

Of the three major states of matter, only one phase has the ability to have drastic 

permanent changes based solely on the orientation of the molecules. Molecules in the liquid and 

gas phases have many degrees of freedom including translational, rotational, and vibrational 

motions. In contrast, the molecules in the solid phase are held relatively rigid to one another. 

This rigidity restricts the ability of the molecules to move and rotate freely in respect to 

neighboring molecules; therefore, the molecules can only possess vibrational freedom. This lack 

of translational and rotational freedom means that a substance can crystallize into different 

crystalline states, which has been termed polymorphism. 

The term ‘polymorphism’ is derived from the Greek word ‘polus’ meaning many and 

‘morph’ meaning shape.1 In the context of chemical and material sciences, polymorphism is 

broadly defined as the ability for a material to crystallize in different arrangements. Essentially, 

the molecule can exist as two or more crystalline phase that contains different arrangements or 

conformations. According to John Halebaian and Walter McCrone, the safest criterion for the 

classification of a system as being polymorphic is that the two polymorphs are different in the 

crystal structure but the same in the liquid or vapor states.2  

Known since the beginning of modern chemistry, polymorphism is a not a new concept 

and is often credited to Mitschelich3 for using the term in his work on the isomorphous sulfates 

of iron, cobalt, nickel, magnesium, copper, zinc, and manganese. However, the concept was not a 

new idea at the time since Humphry Davy commented that diamond and graphite only differ in 

their arrangement of carbon atoms in the solid phase in 1809.2 Looking even farther back the 

concept might have been first realized in 1788 when German chemist Martin Heinrich Klaproth 

observed that calcium carbonate crystallizes both as calcite and as aragonite.2 
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 Polymorphism is an ever-present phenomenon, occurring in every area of chemistry, 

ranging from organic to inorganic to biological and everywhere in-between.4 Polymorphism is 

not only limited to chemistry alone, even the materials in living organisms crystallize in specific 

polymorphic forms under selective control as observed in biological mineralization.5,6 The often 

quoted statement by McCrone states that ‘virtually all compounds are polymorphic and the 

number of polymorphs of a material depends on the amount of time and money spent researching 

the compound’.7,8 This statement seems to hold true based on the ~500,000 hits on the term 

‘polymorphism’ through SciFinder®.9 

 The importance of polymorphs stems not only from curiosity but also from the different 

properties that the same compound can exhibit based only on its solid-state arrangement. These 

differences can be found in its thermodynamic proprieties (solubility, free energy, melting point, 

etc.), spectroscopic properties, kinetic properties (dissolution rate, stability), or mechanical 

properties (hardness, compatibility, tableting, tensile strength, etc.).1 These differing properties 

are of great concern for many industries particularly in pharmaceuticals;2,10,11 however, 

polymorphism has consequences in the quality and manufacturing of many industrial products.12  

 In some cases the use of the wrong polymorph can have devastating effects; a prime 

example is found in the explosives industry where sensitivity of detonation can be polymorph 

dependent.13,14 Pigment color and solubility are polymorphic dependent15-18 as are photographic 

and photolithographic sensitizers.19,20 The performance of industrial products based on natural 

fats and waxes21,22 and their derived soaps,23 and many petroleum products24,25 can vary in 

usefulness based on their polymeric forms. The effects of polymorphism even extends into the 

processing, acceptability and deterioration of foods and confections containing fats,26 sugars,27-29 

polysaccharides30-32 and other components.33,34  
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 Many factors can contribute to the formation of polymorphs. Generally at a given 

temperature and pressure only one form of a substance is thermodynamically stable and all 

others are metastable.35 However, if the conversion of one or more of the metastable forms were 

slow, then it would be reasonable to encounter these polymorphs under normal conditions. If 

these conditions were then adjusted the once metastable form could become the dominate form. 

The generation of polymorphs is not trivial, because the free energy difference36 is generally 

around a few kJ mol-1 and the process of crystallization is affected by many physical parameters. 

These parameters include the nature of the solvent, cooling and stirring rates, temperature, 

pressure and the presence of impurities.35 

1.2     Chemical/Structural Diversity 

 Chemical and structural diversity in the same molecule can be the result of a variety of 

factors. Three of these approaches are going to be highlighted in this investigation, due to their 

occurrence in this work. The first to be discussed are conformational differences, which are the 

result of different molecular configurations of the same compound. The second difference is 

based on composition, while this is not true polymorphism, they could be considered pseudo-

polymorphs because these structures are isomorphous, but have different compositions.12 Lastly, 

differences based purely on packing will be discussed. In these examples, the molecular units are 

identical; however, their packing in three-dimensional space is different. 

 1.2.1     Conformational Based Polymorphism 

In the field of polymorphism, differences in definition and distinction are quite common. 

At one time polymorphism was only regarded as a different arrangement of rigid molecules in 

the solid state.37 However, this narrow definition disregards differences in the arrangements of 
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molecules that exist in different forms, such as isomeric, tautomeric, zwitterionic, and chiral 

structures, as well as conformers.12 Differences based on these changes in conformation are quite 

common in systems containing flexible components due to their internal degrees of freedom, and 

are seen in all types of systems ranging from organic to inorganic and even biological systems. 

This becomes obvious when taking into consideration the drive for energy minimization, because 

any changes in packing will cause geometrical change and conversely any change in geometry 

will invite different molecular packing.38 As illustrated in Figure 1.139 conformationally flexible 

molecules have a large number of packing arrangements based merely on conformation. 

Conformational polymorphism in biological systems will not be discussed in detail. However, 

there are many descriptions in the literature pertaining to the polymorphism exhibited by 

proteins,40 steroids,41-43 barbiturates,44,45 and antihistamines.46  

Conformational polymorphism is very common in organic systems and more increasingly 

observed in organometallic systems. This is due to the flexible torsions and low-energy 

conformers common to organic compounds via rotations about single bonds39 or the delocalized 

metal-ligand bonding and variable oxidations states in organometallic systems.47 More 

specifically, in the case of organometallic molecules, deformation pathway affects the molecular 

structure thereby changing the crystal structure, as well as producing different conformations 

based on different structural isomers. Ferrocene is a classic example conformational 

polymorphism of organometallic molecules in which one disordered room temperature and two 

ordered low-temperatures crystalline forms are known.48 The crystalline forms differ only in the 

relative orientation of the cyclopentadienyl rings so that the phase transition mechanism requires 

only low-energy reorientation of the rings and a limited motion of the molecules in the crystal 

structure. 
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Figure 1.1  Schematic representation of possible packing arrangements, iii-vi, for a 

conformationally flexible molecule. Figure was modified from ref. 39. 
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Classically only organic materials were thought to exhibit conformational polymorphism 

due to their ability to offer more complex arrangements due to the possibilities of having 

isomeric, tautomeric, zwitterionic, and chiral structures. In typical cases, a crystal form with a 

favorable conformation finds an alternative polymorph when a slightly disfavored conformation 

is compensated by better intramolecular interactions with neighboring molecules. Some 

examples of organic molecules capable of conformational polymorphism are shown in Figure 

1.2.39 The extent of polymorphism depends on the rigidity of the molecules. Although some 

floppy ring systems maintain their shape in different forms49,50 even nominally rigid structures 

such as the ring systems of steroids51 can show substantially different conformations in different 

polymorphs.  

 Another form of conformational polymorphism is the result of some compounds being 

able to exist in either a tautomeric or zwitterionic form. This type of polymorphism is generally 

allowed if you consider the simplest definition/classification of a polymorph. The two 

polymorphs will be different in the solid state, but identical in the liquid and vapor states.2 

Frequently in tautomerism, the two crystalline forms will differ; however they will produce 

identical solutions.52,53 Tautomeric polymorphism is surprisingly rare, considering the wide 

spread occurrence of tautomerism in solution.54 A well-investigated example is that of 2-amino-

3- hydroxy-6-phenylazopyridine55 as shown in Figure 1.3, which crystalizes as a red low 

temperature form (a) as well as a blue high temperature form (b).  

The last type of conformational polymorphism is due to chirality. Using the same 

definition that supported the inclusion of tautomeric systems as polymorphs; racemates and 

conglomerates of rapidly interconverting chiral systems should be included as polymorphs.56 In 

these systems, the conformation change is a result of a change in reflection of an asymmetrical  
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Figure 1.2  Examples of conformationally flexible molecules that exhibit conformational 

polymorphism, with the main bond torsions are indicated with arrows. Figure was 

modified from ref.39. 



www.manaraa.com

9 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3  Tautomeric polymorphic forms of 2-amino-3- hydroxy-6-phenylazopyridine 

Figure was modified from ref.55. 
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structure across a mirror plane. Examples of this type of polymorphism where rapidly 

interchanging enantiomers in solution are capable of independent crystal structures are 

known57,58 but uncommon. 

 1.2.2     Compositional Based Polymorphism 

 Polymorphism based on composition would not be truly considered polymorphic because 

the compositions are different. However, their extreme similarity in structure, mostly 

independent on the identity of parts of their structure, could classify them as “pseudo-

polymorphic”. The term “pseudo-polymorphic” is becoming increasingly more common,10,59,60 

particularly due to its frequent use in the pharmaceutical industry. It is usually used in the 

description of hydrates or solvates compared to an anhydrous form, which cannot be considered 

truly polymorphic by any of the definitions of polymorphism. In this investigation, the term 

“pseudo-polymorphic” is being expanded to include not only hydrates or solvates, but also in the 

description of salts,4 where there is no large deviation in structure. In addition, transition metal 

complexes, where the transition metal is different but once again, there are no large deviations in 

structure are also being included under this definition. 

 The study of the pseudo-polymorphism of solvates is a complex topic, partly due to the 

fact that solvates can also exhibit polymorphism.59,61,62 This aspect of solvate pseudo-

polymorphism will not be focused on in this work; instead the focus will be on the effects caused 

by the identity of the solvent and the number of solvent molecules present. Most solvates are 

prepared by crystallization of the compound in the respective solvent of solvation. In addition, 

multiple solvents could be used during crystallization and one or more could be incorporated into 

the final crystal. For example, in the crystallization process of a salt, the solvent, water, has a 

strong effect on how the salt crystallizes. The water weakens the attractive forces of the salt and 
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causes the ions to separate, and once the ions are free they gather water around them. When these 

hydrated ions reach a nucleation site, they crystallize into a salt hydrate, bringing some or all of 

the attached water into the solid composition.63 However, the hydrated ions can combine in 

several ways to form different solids even when the number of water molecules is definite. The 

consequence is that solvates of a compound containing a different number of moles of solvent 

can be prepared by changing the crystallization conditions by holding the temperature constant 

or by maintaining the pressure constant.10 An example of this is seen in the concentration-

pressure curve at 50°C for the cupric sulfate-water system shown in Figure 1.4.64  

Another aspect of the pseudo-polymorphic solvates is the identity of the solvent and the 

effect it has on the complex. This is apparent in the pharmaceutical industry where much 

attention is given to the identity of the solvent in crystalline active compounds. An example of 

this is can be seen in the dissolution of anhydrous, hydrated, and pentanol-solvated forms of 

succinylsulfathiazole as illustrated in Figure 1.5.62 The dissolution of succinylsulfathiazole is 

dependent on the pseudo-polymorphic form. In this example, the hydrated form is ~4 times less 

soluble when compared to the anhydrous form, and inversely the pentanol solvate is 

approximately twice as soluble as the anhydrous and ~8 times as soluble as the hydrate. This 

shows the importance of solvent in the crystallization of various materials. In particular, the size 

and shape of the solvent affects how the parent molecules pack and adjusts the intramolecular 

interactions between them.  

  The pseudo-polymorphism of salts could be considered analogous to the pseudo-

polymorphism of solvates. The study of the pseudo-polymorphism of salts expands into 

inorganic chemistry65 where the salt component acts as charge compensating anion or cation. 

However, the study of pseudo-polymorphic salts is focused primarily in the pharmaceutical  
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Figure 1.4  Concentration-pressure curve at 50°C for the cupric sulfate-water system. Figure 

was modified from ref.64. 
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Figure 1.5  Dissolution behavior of different forms of succinylsulfathiazole in ~0.001 N 

sulfuric acid solution at 20°C. The inset image is of succinylsulfathiazole. Figure 

was modified from ref.62. 
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industry, where the properties of the salts of the same compound can greatly vary. This is due to 

the fact that the salts of acidic and basic drugs have generally higher solubilities than their 

corresponding acid or base forms.66 In addition, crystalline salts can offer useful attributes such 

as improved chemical stability, and higher bioavailability relative to those of the free base or 

acid.67 One molecule that has had a lot of attention because of its polymorphism due to salt 

formation is sertaline HCl known commercially as Zoloft®. Zoloft® has a reported 28 phases 

ranging from polymorphs, solvates, hydrates and amorphous phases.67,68 By adjusting the acidic 

salt component, the solubilities and melting points vary greatly. In one reported case sertaline 

HBr was crystallized and no obvious differences were observed in the packing of the two salts. 

However, the bromide ion caused the drug to produce sedation and dermatological problems and 

the doses had to be limited for toxicity reasons.67 Therefore minor differences in the salt, 

producing pseudo-polymorphs, that have no effect on the geometry of the compound can have 

drastic differences in properties. 

 The last type of pseudo-polymorphism to be introduced relates to transition metal 

complexes. In transition metal complexes, it is easy to induce pseudo-polymorphism by 

replacing the transition metal in the system with another transition metal without changing the 

overall structure of the complex.69 The result of these modifications can have drastic differences 

on their properties70 ranging from simple changes in thermal stability71 to changing toxicity in 

radiopharmaceuticals,72 or could result in different magnetic properties.73  

 1.2.3     Packing Based Polymorphism 

 Polymorphism based exclusively on the packing of molecules in the crystalline state is 

one of the oldest and most common forms of polymorphism. In this variety of polymorphism, the 

molecular constituents have no differences in conformation or composition, just the arrangement 
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in space of one molecule to another. This type of polymorphism is most commonly seen in the 

elements, minerals, and some simple species. 

The polymorphism exhibited by elements is commonly called ‘allotropism’. Most 

elements have this type of polymorphism.74 However, the most commonly discussed elements 

that exhibit well studied allotropism are carbon,75,76 sulfur,77,78 boron,79-84 and phosphorus.85,86 

These variations in packing cause the properties of each form to vary largely from one to 

another. The classical example of this phenomenon is seen in the polymorphs of carbon. There 

are five major solid forms of carbon, illustrated in Figure 1.6,87 two of these allotropes have 

been known since ancient times, diamond and graphite; however, graphene,88,89 fullerenes90-92 

and nanotubes93 have been much more recently discovered.  

 The five major forms of carbon each vary drastically in their properties. Comparing the 

two most common crystalline forms of carbon, diamond and graphite, diamond is an electoral 

insulator, is the hardest known natural substance, has the highest known thermal conductivity 

and is highly durable. On the other hand, graphite is a good conductor, slippery and is not very 

durable.94 Both are composed of the same element, but the physical properties are on opposite 

sides of the “mechanical spectrum”, due only to their packing. The tetrahedral packing of carbon 

in diamond results in a rigid, covalent three-dimensional framework lending incredible strength, 

in comparison to the stacked planer sheets in graphite, consisting of only weaker van der Waal 

interactions. This stacking of sheets results allows the graphite to separate readily from 

neighboring layers, stimulating its slipperiness. 

  Polymorphism in minerals is another example of a long understood concept in chemistry. 

As previously mentioned this concept could date back to 1788 when German chemist Martin 

Heinrich Klaproth observed that calcium carbonate (CaCO3) crystallizes both as calcite and as  
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Figure 1.6  Crystal structures of the different allotropes of carbon. (Left to right) Three-

dimensional diamond and graphite (3D); two-dimensional graphene (2D); one-

dimensional nanotubes (1D); and zero-dimensional buckyballs (0D).Figure was 

modified from ref.87. 
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aragonite.2 The possible reason that this phenomenon was observed prior to the invention of 

most modern analytical techniques was that these polymorphs resulted in a change of space 

group resulting in changes in the physical structure of the crystals. Calcite crystalizes in a 

rhombohedral space group while aragonite crystalizes in an orthorhombic space group. Other 

examples of mineral polymorphism can be seen in zinc sulfide (ZnS) which crystallizes as either 

wurtzite (hexagonal) or sphalerite (cubic), or Titanium oxide (TiO2) which crystalizes as rutile 

(tetragonal), brookite (orthorhombic) and anatase (tetragonal).2,95   

The last classical example of polymorphism as a consequence of molecular packing is 

related to the third most common molecule in the universe, water. The solid from of water, ice, is 

heavily studied due to the over fifteen polymorphic forms due to differences in the packing of the 

water molecules. These polymorphic forms are dependent on the temperature and pressure that 

the ice is crystallized under, illustrated in Figure 1.7.96  

The arrangement of the water molecules in each polymorph is determined by the 

hydrogen bonding between adjacent water molecules. The exact bonding rules state that one and 

only one hydrogen atom is found along each of the hydrogen bonds and that always two 

hydrogen atoms are covalently bonded to each of the oxygen atoms, which preserves the 

stoichiometry of the H2O molecules.97 These bonding rules create “tetrahedra” comprised of the 

points representing hydrogens or hydrogen bonds where the central atom is the oxygen. The 

different packing of these tetrahedra in three-dimensional space creates the different polymorphs, 

as illustrated in Figure 1.8.96  

1.3     Techniques for Determining Polymorphic Forms 

Since the generation of polymorphs can be accomplished via subtle variations in 

synthesis and their properties can vary wildly, the identification of polymorphs has emerged as a  
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Figure 1.7  The phase diagram of water and ice including the melting lines of metastable ices 

IV and XII, and extrapolated phase boundaries at low temperatures (dashed lines). 

Figure was modified from ref.96. 
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Figure 1.8  (1) Six possible orientations of water in Ice. (2) A pentameric fragment of an ice 

Ih structure. Network topologies of ice Ih (a), ice III (b), ice II (c), ice V (d), ice 

IV (e), ice XII (f), ice VI (g) and ice VII (h). Figure was modified from ref.96. 
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crucial field. This is especially true in the pharmaceutical industry, where the study of 

polymorphism during development has become blindingly apparent. In an effort to extend the 

patent life of major products, the discovery of desirable polymorphs is explored in order to 

obtain subsidiary patents.12 

 The analytical techniques for investigating polymorphism can vary wildly depending on 

the properties of interest. One of the earliest and still used methods of polymorph 

characterization was accomplished by the use of microscopy, either by optical crystallography98 

or hot-stage microscopy99 which tracks changes in the refractive indices and polarizability. 

Another major technique in use for the characterization of polymorphs include thermal 

techniques such as thermogravimetric analysis (TGA), differential thermal analysis (DTA), and 

differential scanning calorimetry (DSC). These techniques can be used to describe thermal 

events associated with polymorphs under controlled heating.100,101 A more direct technique for 

the investigation of polymorphs can be accomplished using X-ray crystallography either as a 

single crystal102-104 or as a powder.105-107 

Single crystal X-Ray diffraction gives direct structural information about the polymorph, 

which allows direct investigation of molecular packing. However if single crystals cannot be 

obtained, the use of powder X-ray diffraction, which can give characteristic diffraction patterns 

unique to each polymorph can be obtained. Interestingly, new polymorphs could be obtained 

using either of these techniques. For example, due to the frequent use of cryogenic temperatures 

in single crystal X-Ray diffraction, low temperature polymorphs could be obtained or the 

grinding of powder samples for powder X-ray diffraction could lead to pressure induced 

polymorphic changes.35  
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Another technique that has found widespread use is solid-state NMR. This technique is 

useful for the characterization of organic compounds. However, it should not be used on its own 

but as a complementary technique. In addition, the small chemical shifts differences between 

polymorphs can be obscured by the large line widths of magic-angle spinning necessary for 

solid-state NMR.4 The last technique of importance to the characterization and identification of 

polymorphs is the use of spectroscopy.  

Traditional spectroscopic techniques have been used in the characterization of 

polymorphs including infrared vibrational spectroscopy108-112 and Raman spectroscopy.113-115 

There is however a major disadvantage in the use of these techniques, in that the spectra tend to 

appear virtually identical51,116 or be due to an artifact of interconversion.112 In addition, the very 

low frequencies where the greatest difference between polymorphs might be expected are 

inaccessible using commercial instruments. One spectroscopic technique that overcomes this 

obstacle is terahertz (THz) spectroscopy. THz spectroscopy measures the lattice vibrations 

unique to molecular solids in the terahertz (THz), or far-infrared, region of the electromagnetic 

spectrum typically considered to range from 0.1 THz to 10 THz (3 – 333 cm-1). 

1.4     Terahertz (THz) Spectroscopy 

1.4.1     Terahertz (THz) Spectroscopy 

 The terahertz (THz), or far-infrared, region of the electrometric spectrum is typically 

considered to encompass the range from 0.1to 10 THZ (3-333 cm-1), situated between the 

infrared and microwave regions,117 illustrated in Figure 1.9.118  

  



www.manaraa.com

22 
 

 

 

 

 

 

 

 

 

 

Figure 1.9  The electromagnetic spectrum with the terahertz region shaded in blue. Figure 

was modified from ref.118. 
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The terahertz (THz) region has proven to be one of the most elusive, because THz 

radiation is resistant to the techniques commonly employed in creating and investigating the 

well-established neighboring regions of electromagnetic spectrum. THz spectroscopy was born 

due to efforts to generate and detect ultra-short electrical transient as they propagated down a 

transmission line.119 As understood from Maxwell’s equations, a time-varying electrical current 

would radiate an electromagnetic (EM) pulse, and it was subsequently realized that these 

transmission lines were generating short EM pulses. In 1988/1989, reports120,121 were published 

that described these EM pulses propagating through space from a generator to a detector, which 

lead to envisioning their use as a far-IR light source and detector pair. This discovery was a large 

improvement over the far-IR light sources used in the 1960s,122 which typically utilized arc lamp 

sources and bolometric detection. With these light sources, the power falls off sharply at long 

wavelengths and can have interference from blackbody radiation from the surrounding 

laboratory.119 

Low-energy interactions caused by this region are exhibited by a large number of 

materials. Therefore collecting data in this region would be of great use in complementing the 

knowledge of material behavior obtained with far infrared (FIR) and Raman spectroscopy.118 In 

particular, one of the most attractive properties of THz waves is their ability to penetrate a wide 

variety of materials, so they can be used to analyze content through many types of packaging 

materials, including paper, plastics, leather and wood.117,123 More importantly, THz waves are 

non-destructive, so this allows their use in quality-control applications for industry,124-126 (an 

example is shown in Figure 1.10)127 and probing biological materials for identification,128 

medical diagnostics,129 and security.130-132 THz spectroscopy has been proven to be an effective 

means for measuring many important physical and chemical phenomena, such as lattice  
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Figure 1.10  Two THz images of a chocolate bar. The upper image shows the variation in 

amplitude of the transmitted waveform allowing the embossed lettering to be 

visible, whereas the almonds are clearly visible due to their stronger absorption. 

The lower image shows the variation in transit time of the THz pulse. Here, the 

almonds are almost invisible, but the variation in the thickness of the sample is 

quite clear, allowing the embossed lettering to be easily discerned. Figure was 

modified from ref.127. 
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vibrations in crystalline materials,133,134 relaxation dynamics of liquids and biomolecules,135-138 

and semiconductor carrier dynamics.119,126,139  

A major field in THz spectroscopy is the investigation of the generation and detection of 

THz radiation for the use in THz spectroscopic systems. This subject will not be covered, due to 

it being outside the scope of this work. Information on this topic can be found in many review 

articles including the cited works in the following references: 117, 118, 119, and 127.  

1.4.2     Applications of Terahertz Spectroscopy 

The number of applications for THz spectroscopy are growing and becoming more 

divergent since its initial use in the late 1980s. There are primarily two subsets that these 

applications fall under, either the characterization of materials or imaging. 

  1.4.2.1     Characterization of Materials 

 A large amount of work has gone into the characterization of materials in the gas, liquid, 

and solid phase, as well as in biomaterials and biological systems. The first demonstration of 

THz spectroscopy was reported in 1989 and consisted of the absorption spectrum of water 

vapor.140 Other examples of gas-phase THz spectroscopy include its use to probe the tunneling-

inversion in methyl halides141 and the rotational transitions of water in flames142,143 which would 

normally be impossible with standard analytical techniques. As the last example showed, the 

main purpose of gas-phase analysis is to probe the molecular rotational transitions in the 

vibrational ground state that creates the observed absorption profile. This technique is extremely 

sensitive; orders of magnitude more sensitive than microwave spectroscopy and has a better 

resolution than IR spectroscopy because of lower Doppler effects. This sensitivity was 

demonstrated to a detection limit as low as one part-per-trillion during the analysis of the 
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combustion products of cigarettes144 and this sensitivity drew interest from a security standpoint 

for the identification of volatile explosive materials.145 The drawback of this type of THz 

spectroscopy is that ambient water vapor absorbs THz radiation, thus increasing the signal-to-

noise ratio, resulting in most research to be conducted on the condensed phase. 

 The research done on liquids is primarily focused on water and aqueous solutions due to 

biological applications. In liquids, the absorptions that would occur in the THz region are mainly 

dependent on the interaction and relaxation of dipoles inside the liquid, from polar liquids or 

induced dipoles in non-polar liquids.146 These interactions result in vibrations that are 

characteristic of the collective intermolecular motions inside the liquid, allowing the probing of 

properties ranging from solvent reorientation dynamics147,148 to electron solvation.149 

Solid-state materials are also highly studied using THz spectroscopy, ranging from 

molecular crystals to semiconductors. THz spectroscopy is commonly used to study electronic 

processes and lattice modes for a variety of systems including conducting polymers,150 

insulators,151-153 and semiconductors.154 This is due to the carrier events being on the scale of 

tens to hundreds of femtoseconds leading to variations in the THz region. In addition, the phonon 

modes155,156 are often found in the range of several THz to tens of THz.  

In addition to these more traditional solid-state materials, molecular solids have also been 

heavily investigated. Most if not all molecular crystals have lattice vibrational modes in the THz 

region that are unique to each crystal, giving them a characteristic THz spectrum dependent on 

its specific intermolecular interactions.119 There are two fields where a lot of attention has been 

given to the THz spectra of molecular solids, security and polymorphism. THz spectroscopy has 

been used to record spectral “fingerprints” of a variety of explosives, poisons, and illicit drugs,157 

which would be useful in the detection of these materials, and as an extension, the development 



www.manaraa.com

27 
 

of compact mobile THz devices is an active area of interest.158,159 The other heavily studied field 

is in the pharmaceutical industry because of the THz spectrum is sensitive to crystallinity and 

chirality, making it a potential method for the detection of polymorphs in drug substances.160-162  

1.4.2.2     Terahertz Imaging 

While there are many uses of THz radiation as spectroscopic technique, it has also found 

use as an imaging technique, commonly referred to as T-ray Imaging.127 T-ray imaging was first 

used in 1995163,164 for the imaging of plant and animal material, but since then this technique has 

expanded into many different fields. Due to the non-destructive nature of THz radiation, T-ray 

imaging has found many industrial applications such as quality control in food processing,124,165 

monitoring of water content and the detection of foreign objects, in the paper industry,166-168 and 

extensively in the plastics industries,124,169,170 to measure glass-transition temperatures and fiber 

orientation.  

In addition to being non-destructive, many materials are transparent to THz radiation. 

More interestingly, many materials that are opaque at optical frequencies and provide very low 

contrast to x-rays, such as paper, plastic and ceramics are non-absorbing in the THz range. Based 

on changes in refractive index, different materials can be distinguish by THZ radition.117 This 

can provide many niche applications such as full-body security screening and luggage scanners 

in airports.132,159  

1.4.3     Interpretation of Terahertz Vibrations Using Modeling Techniques 

The fundamental physical interpretation of the THz spectra and the interaction of THz 

radiation is also an important area of research. It is generally understood that the THz absorption 

spectrum of a molecular crystal is comprised of lattice vibrations, which are the product of the 
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intermolecular interactions specific to the unique three-dimensional arrangement inside the 

crystal.118 Unlike Near-IR spectroscopy there are no characteristic group frequencies in the THz 

spectra of crystalline molecular solids; therefore, the understanding of the basic vibrational 

motions caused by the absorption bands is quite challenging. To overcome these challenges 

numerical simulations are normally carried out for the modeling of THz spectra using 

commercial software for the implementation of density functional theory (DFT).  

One requirement to accurately interpret THz spectra is the computational approach must 

accurately model the intermolecular forces that govern the THz region. This can be 

accomplished by using solid-state density functional theory. Solid-state simulations have been 

reported for a variety of molecular crystals; including explosives,171-173 biological molecules,174-

177 illicit drugs,178-180 and pharmaceutical compounds.160-162,181 In addition, a wide range of 

predictive software can be used for evaluation of THz spectra with the most common being: 

Gaussian, CRYSTAL, CPMD, Castep, CHARMM, VASP and D3mol.126,171,182  

1.5     Density Functional Theory and Its Implementation in CRYSTAL09 

1.5.1     Appling Quantum Mechanics to Molecular Vibrations 

 Vibrations in a system can often be described by applying the concept of the classical 

harmonic oscillator. At its simplest, the classical treatment of a harmonic oscillator is a mass 

connected to a wall by means of an ideal spring, Figure 1.11A. This concept can be extended to 

a two mass system as envisioned by two masses connect to a spring, Figure 1.11B. 

As the mass oscillates about its equilibrium position, the force is said to be harmonic if 

the force (F), which is equivalent to mass (m) times acceleration (a), due to the spring is 

proportion to its displacement (x) from its equilibrium position such that it follows eq. 1.1 
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Figure 1.11  (A) Mass m connected to a wall by a spring. The equilibrium position of the mass 

is x =0. (B) Masses m1 and m2 connected by a spring. 
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� = −��		or			
 + �� = 0      (eq. 1.1) 

The value k, is the force constant that changes in magnitude based on the strength of the spring. 

Therefore, a weak spring will have a small force constant and a stiff spring will have a large 

force constant. This relation is known as Hooke’s Law.183 After some mathematical 

rearrangements the energy (E) as sum of the potential and kinetic energies can be expressed as 

eq.1.2 

 = 	 ������        (eq. 1.2) 

which is the product of the force constant times the initial value of the displacement squared. If 

this system is expanded to that shown in Figure 1.11B, there are two equations of motions, 

however the force equation is similar as eq. 1.1 with the following exceptions: 

� = 	�
			where				� = 	�	�
	� +	�

			 

and 

� = 	 ��� − ��� − ��  

The force is now equivalent to the reduced mass (µ) times acceleration and the 

displacement is now the difference between the two masses ���, ���, subtracted by the 

equilibrium position of the spring ��. Therefore, the fundamental vibration frequency (v) for a 

diatomic molecule is 

 � = �
�����        (eq. 1.3) 
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The main difference between the classical model for the harmonic oscillator and the 

quantum mechanical model is that any energy is valid in the classical model of the harmonic 

oscillator, which is a stark contrast to the quantum mechanical model where the energy is 

quantized.  

To determine the vibrational frequencies for the quantum mechanical model,184 it is 

necessary to start from the time-independent Schrödinger equation HΨ=EΨ and, knowing that 

the potential energy is �	 = �
� 	��� , this makes the classical Hamiltonian function for the 

harmonic oscillator equal to eq. 1.4 

 = − !"
#�$

%"
%&" + �

����      (eq. 1.4) 

Transforming the Schrödinger equation to 

− !"
#�"�

%"'
%&" + �

� ���( = (      (eq. 1.5) 

moreover, solving this equation shows that energy for the harmonic oscillator is quantized and is 

limited to 

) = *+ + �
�, ℎ�											+ = 0,1,2, …     (eq. 1.6) 

therefore, the vibration energy ()) is equal to the vibration quantum number (n) plus a half 

times Planck’s constant times the fundamental vibrational frequency (v) given in eq. 1.6. In 

addition to the energy levels of the vibration modes, the wavefunctions for each level can also be 

determined given by the equation 

()��� = 1) ) *2� �3 �, 456&" �3      (eq. 1.7) 
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where 

2 = �#�"��!"   

and 

1) = �
��7)!�9 "3 *

6
�,
� :3

       (eq. 1.8) 

and the  );2� �⁄ �= term is a Hermite polynomials. These wavefunctions can then be plotted to 

give Figure 1.12, which shows the difference between the classical and quantum mechanical 

harmonic oscillator.185  

These equations only exactly apply to one unique oscillation between two atoms. 

However, in a molecular crystal there are multiple atoms oscillating. The general methodology 

still applies to these larger systems if they are considered to move coherently. Taking eq. 1.6 into 

consideration, the vibration must be associated with a large mass or a very small force constant 

to be located in the THz region. For the majority of molecular crystals the THz region consists of 

intermolecular contributions from translations and rotations, which involve weaker electrostatic 

and dispersive forces. The system could be considered one large mass if all of these molecules 

are vibrating together and the weak attractive forces between these molecules give rise to a weak 

force constant. In addition to intermolecular motions, intramolecular motions consisting of 

global distortions of the molecules, torsional motions, or flexing of ringed structures that are 

hindered by the intermolecular interactions are present, but are often mixed with external 

vibrations. 
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Figure 1.12  (a) Potential energy curve for a classical harmonic oscillator. (b) Allowed energy 

levels and wavefunctions for a quantum mechanical harmonic oscillator. Figure 

was modified from ref. 185. 
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1.5.2     Density Functional Theory (DFT) 

First-principles calculations or ab intio calculations begin with only the fundamental 

physical constants needed to describe the interactions between particles.183 With these constants 

and dynamic equations; the energy of a system can be calculated. To treat atomic systems whose 

electrons have extremely small masses, quantum mechanics must be employed. Quantum 

mechanics at its root is a probabilistic approach, which calculates the probability of a particle 

being at a certain location at a certain time, being described by a well-behaved wavefunction 

Ψ.184 This assumption leads to the Schrödinger equation HΨ=EΨ, where the energy of system 

(E) is dependent of this wavefunction and a Hamiltonian (H) which depends on the system being 

described. Solving the Schrödinger equation for a one-electron system is not trivial but can be 

done. However as the system grows larger the solutions become much more problematic to 

obtain. Because of these problems, many methods were developed to approximate the energies 

for large systems, one of which is density functional theory (DFT).186  

Many methods were developed to approximate the solutions to the wavefunction of large 

systems, the earliest being the Hartree-Fock method (HF), which is used to find spin-orbitals that 

can then be used to construct configuration state functions (CSFs). This method is still used 

today. There are limitations however to HF methods, primarily when large basis sets are used on 

molecules that contain many atoms and electrons. Therefore, an alternative method, density 

functional theory (DFT) was developed that instead of using CSFs, employs the concept of 

electron probability density.183 A more thorough explanation of DFT can be found in references: 

187-191. While the density alone cannot obtain all information such as the conventional kinetic 

energy expression, it does however characterize the potential energy experienced by the 
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electrons. In addition, the use of density in some predictive methods can be more accurate than 

the HF method.192  

One reason for the popularity of DFT is that it takes into account electron correlation 

while being less computationally demanding than configuration interaction (CI) calculations or 

Møller-Plesset perturbation theory (MPPT). In addition, calculations on molecules with 100 

atoms or more are done in a significantly less time than HF methods. Lastly, systems containing 

d-shell electrons more frequently agree with experimental results using DFT.  

The concept of a density functional was the basis of early but useful approximate models 

developed in the late 1920s by E. Fermi and L.H. Thomas, the Thomas-Fermi method,193-195 and 

the work of J.C. Slater in the 1950s, Hartree-Fock-Slater method.196 It was not till 1964 that a 

formal proof was given by P. Hohenberg and W. Kohn that the ground-state energy and all other 

ground state properties could be determined by the electron density.197 Later in 1965 the 

derivation of a one-electron equation from which the electron density could be obtained was 

solved by W. Kohn and L.J. Sham.198 The energy (E) calculated for the system (ρ) can be 

expressed192 as 

>?@ = A>?@ + �>?@ + B>?@ + CD>?@    (eq. 1.9) 

Where A>?@ is the kinetic energy, �>?@ is the potential energy, B>?@ is the columbic 

energy and CD>?@ is the exchange-correlation energy. However, the exchange-correlation 

energy is not known explicitly as a function of the system or its orbitals. Therefore, this value 

must be approximated. This approximation has been an active area of research199-202 and since no 

standard computational method exists, the calculations must be compared to experimental 

values. To this end many functionals incorporate empirical or semi-empirical information.203-205  
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A large number of functionals have been developed and fall into three general categories: 

local density approximations, generalized gradient approximations, and hybrid functionals. Local 

density approximations (LDA) are based on the exchange energy of a uniform electron gas, 

which can be directly calculated, and the correlation energy of an electron gas fit to experimental 

measurements.206 Generalized gradient approximations (GGA) are modified LDA functionals 

that accounts for the inhomogeneity of the electron density.205 The last method discussed are 

hybrid functionals, which include Hartree-Fock corrections in addition to density functional 

correlation and exchange.207 There are a large amount of correlation and exchange functionals 

available for use such as LDA functionals [P86 (Perdew 1986),208 PZ (Perdew-Zunger),209 VBH 

(von Barth-Hedin),210 VWN (Vosko-Wilk-Nusair),211 LDA (Dirac-Slater)212], GGA functionals 

[LYP (Lee-Yang-Parr),213 PBE (Perdew-Burke-Ernzerhof),214 PWGGA (Perdew-Wang 1991),215 

WL (Wilson-Levy),216 B (Becke),205 P (Perdew),217 B86 (Becke 1986),218 B95 (Becke 1995),219 

WCGGA (Wu-Cohen)220] and combinations of the correlation and exchange functionals, hybrid 

functionals [PBE0,221 B1PW91,222 B3PW215,223-226]. The functional primarily used in this study is 

the B3LYP213,223 functional, which is one of the most widely used functionals for DFT 

calculations. The B3LYP functional is a combination of Becke’s 3 parameter functional (B3) 

combined with the non-local correlation developed by C. Lee, W. Yang, and R.G. Parr (LYP). 

Besides functionals, another important aspect of DFT calculations is the selection of a 

proper basis set. The choice of basis set is of fundamental importance because a real atom has an 

infinite number of orbitals; therefore, to accurately describe a real atom, an infinitely large basis 

set would be necessary. Since it is physically impossible to obtain this basis set, the number of 

orbitals in the basis set must be truncated, and this is where the choice of basis set is crucial. If a 

basis set is chosen that does not contain enough orbitals, the atom will not be accurately 
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described. On the other hand, if too many orbitals were included, the amount of time necessary 

to complete the calculation would be prohibitive for routine use. Therefore a basis set must be 

chosen that it large enough to meet the accuracy that is wished to be obtained, while small 

enough to be completed in a reasonable amount of time.  

There are two primary types of basis sets, Slater-type Orbitals (STO) and Gaussian-type 

orbitals (GTO). Slater type orbitals are approximate atomic orbitals, which model the actual 

wavefunctions by fitting to numerically computed wavefunctions. For atomic calculations, the 

STO basis functions are centered on the atomic nucleus. However, in a polyatomic species they 

are centered on each atom.183 Therefore with molecules of more than three atoms the evaluation 

of the two-electron integrals is impractical. The introduction of Gaussian-type orbitals (GTO) in 

1950 by S.F. Boys227 played a major role in making ab initio calculations feasible.228 The central 

advantage of GTOs is that the product of two Gaussians at different centers is equal to a single 

Gaussian function centered at a point between the two atoms. Therefore two-electron integrals on 

three and four different centers can be reduced to integrals over two difference centers, which is 

much easier to calculate.183  

The simplest type of basis set is a minimal basis set in which one function is used to 

represent each orbital of elementary valence theory; however, this type of basis set is not 

normally sufficient for chemical accuracy. To increase accuracy, the number of functions in the 

basis set can be increased by doubling or tripling the number of basis functions present in the 

minimal basis set. The downside of doing this is that the calculations become increasingly more 

taxing. Therefore a split-valence basis set can be used where the inner electrons are characterized 

by one basis function and the valence electrons are characterized by two basis functions.  
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There is a disadvantage in using GTOs over STOs in that GTOs do a poor job of 

describing the orbitals near the atomic nuclei. To overcome this problem several GTOs can be 

grouped together to form a contracted Gaussian function, which is a linear combination of the 

primitive Gaussian functions, thereby reducing the number of unknown parameters which can 

lead to a large time savings with nearly no loss of accuracy. There are multiple ways of 

contracting Gaussian basis sets; the most popular method was developed by the research group 

of John Pople.229 The standard notation for these basis sets is X-YZG, where the G stands for 

Gaussian, the X indicates the number of primitive Gaussian functions that are used for the core 

orbitals; the number of values after the hyphen represent the value of zeta for the basis set. Y and 

Z represents the number of functions for the valence-shell orbitals where one is a linear 

combination of Y primitive Gaussian functions and the other is a linear combination of Z 

primitive Gaussian functions. For example, the 3-21G basis set is comprised of one contracted 

Gaussian composed of three primitives for the core electrons. In addition, it is a double-zeta 

basis set where the valence shell orbitals are comprised of two functions, one is a contracted 

Gaussian of two primitives and the other is a single primitive Gaussian Orbital.183 

 The accumulation of the above information can be used to infer many useful properties of 

atomic systems; however, this is not usually done from “scratch” for every calculation. This 

information has been adapted for use by many research groups around the world for a more 

broad audience. By implementing the fundamentals of quantum chemistry, density functional 

theory and basis sets, into a computer program, a thorough knowledge of intricate quantum 

mechanics is not a necessary (but useful) requirement. One such computer program that was 

developed for the use of predicting molecular structure and properties was CRYSTAL. 
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1.5.3     CRYSTAL09 

 CRYSTAL is a general-purpose program for the study of crystalline solids, and the first 

that has been distributed publicly.230 Developed by R. Dovesi, C. Pisani, C. Roetti, M. Causá, 

and V.R. Saunders at the University of Torino, the first version was released in 1988231 and then 

rereleased six additional times as CRYSTAL92,232 CRYSTAL95,233 CRYSTAL98,234 

CRYSTAL03,235 CRYSTAL06,236 and the most recent CRYSTAL09.237 The CRYSTAL 

program computes the electronic structure of periodic systems within Hartree-Fock, density 

functional or various hybrid approximations.  

 To be able to perform these calculations on crystalline solids, the infinite three-

dimensional structure must be reduced to a finite number of parameters. This can be 

accomplished by exploiting the use of symmetry of the system, which is inherent in one form or 

another in the solid state. The fundamental approximation made is the expansion of the single 

particle wave functions (‘Crystalline Orbital’, CO) as a linear combination of Bloch functions 

(BF) defined in terms of local functions (‘Atomic Orbitals’, AOs) which are, in turn, linear 

combinations of Gaussian type functions (GTF).230  

 Exploiting the use of translational symmetry allows factorization of the eigenvalue 

problem in periodic systems, because the Bloch functions are a basis for irreducible 

representations of the translation group. Therefore, in periodic calculations the point symmetry is 

used to reduce the number of points needed to calculate the matrix equations. In addition, the 

point symmetry is used to reconstruct the Hamiltonian, which is also symmetric with respect to 

the point group operators of the system.  

 Another important aspect of ab initio calculations for periodic structures is integration 

over reciprocal space. The unit cell of a crystalline system can be defined in the reciprocal lattice 
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and is referred to as the Brillouin zone (BZ). The Brillouin zone is defined as all points in 

reciprocal space that lies closer to Γ which refers to the (0,0,0) point of the Brillouin zone. This 

usage of reciprocal space means any reciprocal points beyond the first Brillouin zone are 

redundant when evaluating the Bloch functions and integrating over the Brillouin zone is 

equivalent to evaluating the sum over an infinite number of translational lattice vectors. This 

definition is exploited in CRYSTAL during the self-consistent procedure, when determining the 

Fermi energy (EF), and reconstructing the one-electron density matrix. Moreover, after self-

consistency is reached, calculating the density of states (DOS) and a number of observable 

quantities also exploit the redundancy generated using Bloch functionals. The Fermi energies are 

evaluated starting from the knowledge of the eigenvalues and the eigenvectors at a certain set of 

sampling points which in three-dimensional crystals belongs to a lattice called the Monkhorst 

net,238 where only points of the Monkhorst net belonging to the irreducible part of the Brillouin 

Zone (BZ) are considered, illustrated in Figure 1.13. This net must be dense enough to sample 

enough of the Brillouin Zone to allow the energy to be calculated correctly. To determine the 

necessary number of reciprocal points needed is done normally through trial and error, by 

gradually increasing the number of points to find a value of the total energy that does not change 

with increased sampling. 

Two completely different situations must also be considered, depending on whether the 

system is an insulator (or zero gap semiconductor), or a conductor. If the system is an insulator, 

all the bands are either fully occupied or vacant and the identification of EF is elementary. On 

the other hand if the system is a conductor an additional parameter needs to be supplied to define 

a Gilat net239,240 which is analogous to the Monkhorst net, with the exception that the value of the 

Gilat net is generally larger resulting in a denser net. Once the sampling of reciprocal space is  
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Figure 1.13  The reciprocal lattice cell of 2D graphite (rhombus), the first Brillouin zone 

(hexagon), the irreducible part of Brillouin zone (in grey), and the coordinates of 

the reciprocal points according to a Pack-Monkhorst sampling, with shrinking 

factor A) 3 and B) 6. Figure was modified from ref.237. 
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adequate, the calculation of the electron density in real space requires an iterative procedure to 

simultaneously determine the appropriate set of orbitals and to satisfy the Kohn-Sham 

Hamiltonian, referred to as the self-consistent field (SCF). 

At each point in reciprocal space (k) the calculation of the electron density is solved using 

the Roothaan-Hall equation241,242 

�(�)H(�) = I(�)H(�)(�)      (eq.1.10) 

in which S(k) is the overlap matrix over the Bloch functions, E(k) is the diagonal energy matrix, 

A(k) is the expansion coefficients of the Bloch function. The Fock matrix in direct space is the 

summation of the one-electron and two-electron contributions in the basis set of the atomic 

orbitals, where the one-electron contribution is the sum of the kinetic and nuclear attraction and 

the two-electron term is the sum of the Coulomb and exchange contributions.230 The iterative 

process for solving for the expansion coefficients is outlined in Figure 1.14. After choosing a 

basis set and geometry, an initial guess is made for the density matrix. Using this density matrix 

the Fock matrix is calculated and a set of expansion coefficients is then found. These expansion 

coefficients are then used to determine a new density matrix. This process is repeated until the 

new density matrix is the same or within the given tolerances of the previously calculated density 

matrix. This process is the basis for calculating a single point energy. 

 One of the most important processes in the modeling of chemical systems is the 

determination of the equilibrium structure. The atomic positions and lattice parameters of crystal 

structure must be iteratively optimized to reach the potential energy minimum on the potential 

energy surface (PES). To determine the location of this minimum, basic methods are employed, 

using first- and second- derivatives, which allow the identification and characterization of 

stationary points of the PES. As the atomic positions are adjusted the first derivatives of the 



www.manaraa.com

43 
 

 

 

Figure 1.14  Generalized SCF procedure for calculating the electron density as implemented in 

CRYSTAL 
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potential energy with respect to the atomic positions will reach zero (or within some specified 

tolerance), and the second derivatives are positive, indicating a minimum energy configuration. 

CRYSTAL utilizes gradient-based algorithms to analytically calculate the necessary derivatives 

needed to optimize the structure.243 To accomplish this a quasi-Newtonian optimization scheme 

is implemented, where in the gradients are evaluated each time the energy is computed and the 

second derivative matrix (Hessian matrix) is updated by using a Broyden-Fletcher-Goldfarb-

Shanno scheme.244-248 A simple flowchart for the optimization process of the geometry is shown 

in Figure 1.15.249  

 With the geometry optimized, the most useful property in relation to this work is the 

determination of vibrational frequencies. While the goal of this work is to obtain vibrational 

frequencies, the importance of an accurate geometry optimization is crucial. This is due to 

vibrational frequencies only being meaningful if the crystalline structure is at a stationary point 

on the potential energy surface. The vibrational frequencies are determined in CRYSTAL by first 

analytically determining the energy first derivatives with respect to the atomic positions and then 

calculating the second derivatives numerically at a point where all the first derivatives are 

zero.250-252 Due to the infinite nature of crystalline systems, the atomic positions are not followed 

in real space, but in reciprocal space. The frequencies are only calculated at the special point Γ 

(0,0,0) allowing the frequencies to be evaluated in the same manner as for molecules. This means 

that in the determination for the first-derivatives, each atom is displaced along each of the three 

Cartesian coordinates in the Brillouin zone, and the energy derivatives are evaluated. Vibrational 

frequencies can then be computed from the force constants obtained from diagonalization of the 

energy derivatives.  
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Figure 1.15  Simple scheme of the optimization process for CRYSTAL. Figure was 

modified from ref. 249. 
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As an extension of the locations of the vibrational harmonic frequencies, the intensities of 

the vibrations with respect to one another are also important. The default method of calculating 

the intensities of the vibrations in the current version of CRYSTAL (CRYSTAL09) is 

accomplished using the Berry phase approach.230 The Berry phase approach consists of 

evaluating the Born charges, which are the derivative of the dipole moment with respect to the 

atomic displacements, as polarization differences between the central and the distorted 

geometries.252 

1.6     General Research Considerations 

The work presented in this thesis is not focused on one particular set of substances. 

However, the technique used to characterize each substance is the same. The general theme 

centers on the analysis of the vibrational spectra of a variety of organic, hybrid organometallic 

and inorganic species modeled using solid-state density functional theory (DFT). The solid-state 

DFT method used in this study was implemented in CRYSTAL09, which has shown much 

potential for it use in the characterization of crystalline solids. 

The systems investigated in the work range from purely inorganic to purely organic. Each 

contained a set of substances that could be considered as polymorphic to one another, either in a 

traditional sense or as pseudo-polymorphs. The first to be investigated was the purely inorganic 

vanadium phosphate system consisting of three conformational polymorphs of VOPO4, which 

were all derived by different methods of dehydrating VOPO4•2H2O. The next substance 

investigated included three different sets of complexes based on the 5-monosubstituted tetrazole, 

5-(4-pyridyl)tetrazole. The last substance studied was α,α,α′,α′-Tetrabromo-p-xylene, which 

exhibited unique packing due to the system being held together primarily by electrostatic 

interactions. 
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 The studies involving 5-(4-pyridyl)tetrazole were comprised of the comparison of a new 

polymorph based purely on packing to previously published crystallographic information of the 

free acid 5-(4-pyridyl)tetrazole. The next study was the comparison of two hydrohalide salts of 

5-(4-pyridyl)tetrazole, which could be considered pseudo-polymorphs due to the only difference 

being the identity of the anion. The last set of compounds compared where three isomorphous 

transition metal complexes with 5-(4-pyridyl)tetrazole as a ligand, which could also be 

considered pseudo-polymorphic, where the polymorphism is based on composition. 

The vibrational technique used to characterized most of these systems, with the exception 

of the polymorphs of vanadium phosphate, was terahertz (THz) spectroscopy. THz spectroscopy 

was used to probe the intermolecular interactions in these molecular crystals, which are unique to 

this region. It was found that subtle differences in the structure, composition, or packing could 

have large and varying effects on the vibrational modes, especially in the terahertz region. 

However, no universal trends in the vibrational frequency could be determined. Nevertheless, it 

was determined that the nature of the normal mode has the greatest effect when comparing 

systems that have compositional differences. 

Through the investigation of these systems, a variety of structure types have been able to 

be modeled using solid-state DFT and in particular using CRYSTAL09. However, a great deal of 

work could still be done because most systems have polymorphic forms based on how hard one 

looks for them. The methods demonstrated in this work, could be used as a starting point for the 

investigation of organic, hybrid organometallic and inorganic species. This is especially true for 

transition-metal complexes, which are plagued by unfilled d orbitals and different spin 

configurations, which if not accounted for properly would result in an unobtainable solution or 

be inaccurate.  
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Chapter 2 

 

A Solid-state Density Functional Theory Investigation of the 

Structure and Vibrational Modes of Vanadium Phosphate 

Polymorphs 

 

 

The material contained within this chapter is published in Journal of Molecular Structure 

(Pellizzeri, S.; Korter, T.M.; Zubieta, J. J. Mol. Struct. 2011, 1003, 21-30). This article has been 

reproduced with permission from Elsevier. 
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2.1     Introduction  

Vanadium phosphates have been experimentally studied for decades and used 

commercially for their selective catalysis of n-butane to maleic anhydride since the mid-1960s.1 

These materials have more recently also found use as cathode materials in Li ion rechargeable 

batteries because of their ability to electrochemically intercalate and deintercalate Li.2 The 

majority of modern investigations of vanadium phosphates have focused on their physical 

properties, while correlations of the structural and vibrational characteristics of these materials 

remain relatively unexplored.  

In the broad field of vanadium phosphates, VOPO4 could be considered the simplest of 

the vanadium(V) phosphate materials. However, it is structurally complex due to the existence of 

seven distinct crystal phases, α1, α2, β, ε, δ, γ, and ω.2 Our understanding about these phases is 

somewhat limited because these polymorphs are difficult to synthesize as single crystals, 

necessitating the use of powder diffraction methods to determine structure. In this study, the 

three oldest known phases α1, α2, and β are compared using mid-infrared vibrational 

spectroscopy coupled with solid-state density functional theory (DFT) calculations to show the 

differences in the vibrational modes caused by the subtle structural differences in each phase. 

The α1, α2, and β crystal phases of VOPO4 have structures consisting of vanadium 

octahedra and phosphate tetrahedral units with small structural differences between phases. The 

α phases both contain a layered structure of vanadium octahedra and phosphate tetrahedra linked 

through extremely long V-O bonds (~2.5– 2.8 Å) as seen in Figure 2.1. The only structural 

difference between the two α phases is the location of the vanadium within its octahedron: in the 

α1 phase the vanadium is located on the same side of the equatorial plane as the phosphorus 

while in the α2 the vanadium is on the opposite side, as shown in Figure 2.2.3  
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Figure 2.1 Polyhedral representation of the crystal structure of the α phases of vanadium 

phosphate (VOPO4) (vanadium is shown in orange, phosphorus is shown in 

yellow, and oxygen is shown in red). 
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Figure 2.2 -P-O-V-O-P- chain demonstrating the vanadium location within the octahedra for 

(a) α1-VOPO4 and (b) α2-VOPO4. 
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The α phases can also allow water molecules to be reversibly intercalated between these 

layers leading to hydrates such as VOPO4·H2O and VOPO4·2H2O.4 The β phase differs from the 

α phases in that, instead of the layers being held together by long V=O···V interactions, it is 

comprised of a 3D network held together by the P-O-V interactions in all directions, as 

illustrated in Figure 2.3. 

To study the various crystal phases of VOPO4, the vibrational modes were simulated 

using solid-state DFT as implemented in CRYSTAL09. The CRYSTAL code has been used 

previously to simulate many inorganic systems to determine their structural, electronic and 

magnetic properties5–7 and the vibrational spectra of organic systems.8–10 Solid-state DFT 

methods utilize periodic boundary conditions which are required to accurately simulate 

vibrational motions that are perturbed by crystal packing forces and perhaps equally important, 

to couple external lattice motions to the internal ‘‘molecular’’ motions of the asymmetric repeat 

unit of the vanadium phosphate phases, which can be of great significance. 

Due to the variation in space group symmetries of the VOPO4 crystal phases, differences 

can be seen in the number and location of the vibrational modes. The aim of this research is to 

use FT-IR coupled with the simulated frequency and intensity of the vibrational modes to show 

the ability of solid-state DFT to determine and predict the subtle spectral differences and 

similarities between the α1, α2, and β crystal phases of VOPO4. 
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Figure 2.3  Polyhedral representation of the crystal structure of the β phase of vanadium 

phosphate (VOPO4) (vanadium is shown in orange, phosphorus in yellow, and 

oxygen in red). 
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2.2     Experimental and Theoretical Methods 

2.2.1     Synthesis of VOPO4·2H2O and VOPO4
 

Vanadium(V) oxide (98%), phosphoric acid (85 wt.% in H2O), and molybdenum trioxide 

(99.5%) were purchased from Aldrich and used without further purification. Water was distilled 

above 3.0 MΩ in-house using a Barnstead Model 525 Biopure Distilled Water Center. The 

various phases of VOPO4 were prepared on a TA Q500 series thermogravimetric analysis (TGA) 

instrument under flowing nitrogen on a platinum TGA pan. The infrared spectra were obtained 

on a Thermo Nicolet IR200 FT-IR using the KBr pellet method and a spectral resolution of         

4 cm-1 over the range of 4000–400 cm-1. The KBr was dried prior to usage. 

2.2.1.1     Synthesis of VOPO4·2H2O 

VOPO4·2H2O was prepared according to literature procedures by refluxing a mixture of 

V2O5 (0.5 g), 85% H3PO4 (4.46 g), and H2O (12 mL) at 403 K for 16 h.4 The yellow product was 

filtered, washed with acetone, and kept under ambient conditions. Infrared spectroscopy was 

used to confirm the product identity.11 

2.2.1.2     Synthesis of α1-VOPO4, α2-VOPO4, and β-VOPO4 

The procedure used to produce the phases of VOPO4 is similar to that previously 

reported;4 however, the procedure was modified as follows. The initial hydrate was finely ground 

prior to the TGA cycle and after the initial run was removed from the TGA and ground again 

prior to the final TGA cycle. This is done to ensure a thorough conversion of the hydrate to the 

intended phase. Thus, α1-VOPO4 was prepared by heating approximately 5 mg of VOPO4·2H2O 

to 673 K at 5 K/min and held at this temperature for 30 min. α2-VOPO4 was prepared by first 
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grinding together VOPO4·2H2O and 1% by weight of MoO3 and allowing this mixture to sit 

overnight under ambient conditions. Subsequently, approximately 5 mg of this mixture was 

heated to 973K at 5 K/min and held at this temperature for 30 min. β-VOPO4 was prepared by 

heating approximately 5 mg of VOPO4·2H2O to 973 K at 20 K/min and holding at this 

temperature for 30 min. The infrared spectra were obtained immediately after the second cycle 

was completed to reduce the chance of rehydration to the dihydrate phase. 

2.2.2     Theoretical Methodology of CRYSTAL09 

Geometry optimizations, harmonic frequencies, and infrared (IR) intensity calculations 

were performed using the CRYSTAL09 program.12,13 All calculations were performed using the 

PBE014 hybrid density functional. The basis set chosen for vanadium was the V_86-411d31G 

basis set15 and for phosphorus the P_85-21d1G 16 basis set. Due to the limited number of basis 

sets that have been optimized for use in CRYSTAL09 for large atoms, the vanadium and 

phosphorous basis sets that were used for these calculations were those with the largest number 

of orbital descriptions and those most recently published. Five different oxygen basis sets were 

used to compare basis sets optimized for use in CRYSTAL versus standard Pople basis sets. The 

Pople basis set used was the 6-31G(d,p) Gaussian-type basis set17,18 obtained from the EMSL 

Basis Set Exchange.19,20 The basis sets that were optimized for use with CRYSTAL were      

O_6-31d1,21 O_8-411d1_2005,22 O_8-411d1_2006,23 and O_8-411d11G.24  

The positions of the atoms contained within the unit cell were optimized within the 

constraints of the literature lattice parameters and space group symmetry. The experimental 

coordinates were used as starting positions for the simulation of the α1, α2, and β crystal phases 

of VOPO4.
25–27 It should be noted that since the atomic coordinates for α1-VOPO4 have yet to be 

obtained experimentally, the structure is assumed to be the isomorphous with α-VOSO4 as 
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suggested by Tachez et al.3 Using the atomic coordinates from α-VOSO4 as a starting point, the 

atomic positions were adjusted to give bond length values corresponding to the longest bond 

length and edge–edge distances given by Tachez et al.3 The atomic positions used are listed in 

Table 2.1.  

From the optimized structures, the bond lengths and bond angles were determined and 

compared with the experimental crystallographic results. After optimizing the structures, 

harmonic- limit normal-mode analyses on the VOPO4 phases were conducted. Frequencies were 

determined by a mass-weighted numerical evaluation of the Hessian matrix28 and infrared 

intensities were calculated through the Berry phase approach.13 The Berry phase approach 

consists of evaluating the Born charges, based on the derivative of the dipole moment with 

respect to the atomic displacements, as polarization differs between the equilibrium and the 

normal-mode displaced geometries; the polarization difference is then equal to the time-

integrated transient macroscopic current that flows through the insulating sample during the 

vibrations.13  

Several of the convergence parameters were changed to optimize the accuracy and 

computational time of the calculations. The convergence criteria were modified to set the root 

mean square of the maximum gradient (TOLDEG) and the maximum displacement (TOLDEX) 

to be 0.00001 and 0.00004 angstroms, respectively. To improve the numerical accuracy of the 

calculations the truncation criteria for bielectronic integrals (TOLINTEG) was set to 8 8 8 8 16 

and the DFT integration was set to XLGRID (75,974) (see Refs. [12,13] for details). Total 

energy convergence (TOLDEE) was set to DE < 1 x 10-8 Hartree for the geometry optimizations, 

and DE < 1 x 10-11 Hartree for frequency analyses. To assist in a timely convergence, the 

‘‘Fock/KS matrix mixing’’ (FMIXING) was increased from the default value of zero to 50 for all 
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Table 2.1  Modified atomic coordinates used for the initial structure of α1-VOPO4. 

 

Space Group P4/n 
Unit Cell Dimensions a= 6.20, c= 4.11 

Atom x y z 

V 0 0.5 0.6052 
P 0 0 0.5 
O1 0 0.5 0.22 
O2 0.7 0.462 0.715 
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three systems. The eigenvalue level shifter was also activated with the level shifter set to a value 

that corresponds to a shift of 0.5 Hartree, and the state was locked, confining it to an insulating 

state (see Refs. [12,13] for details). Determination of the optimum sampling of reciprocal space 

was performed by comparing the total energy of the converged system to the k-point count using 

the keyword SHRINK. The optimum SHRINK values for the VOPO4 phases were determined to 

be SHRINK = 8 which corresponds to 260 points in the Brillouin zone. 

2.3     Results and discussion 

 2.3.1     Comparison of the Calculated and Experimental Structures 

 The calculated and X-ray experimental bond lengths, bond angles, and the root-mean-

squared deviation (RMSD) values are shown in Tables 2.2–2.4 (see Figures 2.4 and 2.5 for the 

labeling scheme) for each of the phases of VOPO4, and the results are visualized in Figure 2.6.  

Each of the phases behaved differently with the five oxygen basis sets investigated, 

demonstrating the importance of basis set choice on the accuracy of a simulation when 

considering subtle structural variations. 

For the α1 phase, the basis set that most accurately represented the bond lengths was       

6-31G(d,p), while the worst was O_8-411d11G. The basis set that best represented the bond 

angles for the α1 phase was 6-31G(d,p), and the one that most poorly predicted the angles was 

O_6-31d1. However, since there are no definitive atomic coordinates to use as an experimental 

comparison, it is difficult to truly compare the bond lengths and angles for this phase because of 

the limitation of comparing them to those of α -VOSO4. For the α2 phase, the basis set that 

provided the most accurate representation of the bond lengths and angles was O_8-411d1_2006, 
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Table 2.2  Interatomic bond lengths (Å), angles (°), and RMSD values for α1-VOPO4. See 

Figure 2.4 for atomic labels. Lowest RMSD values are shown in bold. 

Experimental parameters are from Ref. [25]. 

 

Bond, Å Experiment 6-31G(d-p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
V-O1a 1.5832 1.5670 1.5538 1.5612 1.5649 1.5536 
V-O1b 2.5268 2.5430 2.5560 2.5488 2.5451 2.5564 
V-O2 1.9284 1.9016 1.8875 1.8840 1.8814 1.8855 
P-O2 1.5408 1.5539 1.5395 1.5435 1.5446 1.5405 

 
RMSD 0.01881 0.02912 0.02714 0.02689 0.02997 

       
Angle, ° Experiment 6-31G(d-p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 

O1a-V-O2 103.534 101.407 101.108 101.800 101.824 101.923 
O1b-V-O2 76.466 78.593 78.892 78.200 78.176 78.077 
O1a-V-O1b 180.000 180.000 180.000 180.000 180.000 180.000 
O2a-V-O2a 86.861 87.758 87.873 87.603 87.594 87.554 
O2a-V-O2b 152.933 157.186 157.784 156.400 156.351 156.154 
O2a-P-O2a 110.009 110.171 110.532 109.255 109.337 109.240 
O2a-P-O2b 109.203 109.123 108.943 109.579 109.538 109.587 

V-O2-P 128.562 130.560 132.693 132.564 132.712 132.628 
V-O1-V 180.000 180.000 180.000 180.000 180.000 180.000 

 
RMSD 1.8846 2.4434 1.9807 1.9960 1.9240 
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Table 2.3  Interatomic bond lengths (Å), angles (°), and RMSD values for α2-VOPO4. See 

Figure 2.4 for atomic labels. Lowest RMSD values are shown in bold. 

Experimental parameters are from Ref. [26]. 

 

Bond, Å Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
V-O1a 1.5781 1.5667 1.5532 1.5621 1.5659 1.5548 
V-O1b 2.8559 2.8673 2.8808 2.8719 2.8681 2.8792 
V-O2 1.8581 1.8855 1.8716 1.8687 1.8648 1.8693 
P-O2 1.5424 1.5468 1.5323 1.5369 1.5377 1.5346 

 
RMSD 0.01605 0.01952 0.01279 0.00955 0.01783 

       
Angle, ° Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 

O1a-V-O2 101.675 101.980 102.032 101.509 101.464 101.359 
O1b-V-O2 78.325 78.020 77.968 78.491 78.536 78.641 
O1a-V-O1b 180.000 180.000 180.000 180.000 180.000 180.000 
O2a-V-O2a 87.653 87.531 87.509 87.719 87.736 87.777 
O2a-V-O2b 156.650 156.041 155.936 156.982 157.072 157.282 
O2a-P-O2a 109.282 109.433 109.671 109.192 109.068 109.222 
O2a-P-O2b 109.566 109.490 109.372 109.611 109.673 109.595 

V-O2-P 147.237 144.443 147.005 146.385 146.723 146.291 
V-O1-V 180.000 180.000 180.000 180.000 180.000 180.000 

 
RMSD 0.9665 0.3380 0.3172 0.2572 0.4101 
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Table 2.4  Interatomic bond lengths (Å), angles (°), and RMSD values for β-VOPO4. See 

Figure 2.4 for atomic labels. Lowest RMSD values are shown in bold. 

Experimental parameters are from Ref. [27]. 

 

Bond, Å Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
V-O1 1.8863 1.8863 1.8806 1.8822 1.8799 1.8843 
V-O2 1.8533 1.8536 1.8383 1.8404 1.8385 1.8388 
V-O3 1.9021 1.9248 1.9072 1.8985 1.8944 1.9000 

V-O4a 1.5649 1.5634 1.5500 1.5580 1.5632 1.5514 
V-O4b 2.5915 2.5486 2.5750 2.5900 2.5839 2.5973 
P-O1 1.5275 1.5412 1.5275 1.5343 1.5361 1.5318 
P-O2 1.5388 1.5619 1.5494 1.5525 1.5539 1.5505 
P-O3 1.5174 1.5382 1.5263 1.5330 1.5350 1.5300 

 
RMSD 0.02095 0.01101 0.00951 0.01113 0.00967 

       
Angle, ° Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 

O1-V-O1 154.340 153.082 155.016 154.019 154.234 154.090 
O1-V-O2 88.292 88.036 88.559 87.897 87.846 87.920 
O1-V-O3 87.498 87.626 87.139 87.589 87.643 87.517 
O1-V-O4a 102.814 103.452 102.468 102.985 102.880 102.949 
O1-V-O4b 77.170 76.551 77.508 77.011 77.119 77.046 
O2-V-O3 160.948 161.280 159.971 159.818 159.666 159.541 
O2-V-O4a 100.550 100.286 100.202 100.997 100.902 101.072 
O2-V-O4b 82.454 83.740 82.956 81.413 81.245 81.268 
O3-V-O4a 98.502 98.434 99.827 99.185 99.432 99.386 
O3-V-O4b 78.494 77.540 77.015 78.406 78.420 78.273 

O4a-V-O4b 176.997 175.974 176.842 177.590 177.853 177.659 
O1-P-O1 107.554 106.766 107.959 107.513 107.521 107.480 
O1-P-O2 108.965 109.251 109.066 109.200 109.212 109.168 
O1-P-O3 110.290 109.971 109.976 109.566 109.503 109.565 
O2-P-O3 110.704 111.511 110.742 111.701 111.791 111.794 
V-O1-P 138.458 137.463 139.013 138.145 138.158 138.213 
V-O2-P 138.387 136.130 137.252 137.189 137.064 137.196 
V-O3-P 154.153 153.560 154.744 153.272 153.257 153.272 
V-O4-V 137.713 140.972 140.046 138.435 138.565 138.393 

 
RMSD 1.1416 0.8537 0.6535 0.7364 0.7123 
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Figure 2.4 The atom labeling for the α phases of vanadium phosphate (VOPO4). 



www.manaraa.com

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The atom labeling for the β phase of vanadium phosphate (VOPO4). 
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Figure 2.6 Calculated bond-length differences for each oxygen basis set compared to the 

structure determined through powder X-ray diffraction. Bond-length comparison 

for (a) α1-VOPO4, (b) α2-VOPO4, and (c) β-VOPO4. 
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while the worst performing basis sets representing the bond lengths and angles were O_6-31d1 

and 6-31G(d,p), respectively. For the β phase, the basis set that most accurately represented the 

bond lengths and angles was O_8-411d1_2005. The basis set that worst represented the bond 

lengths and angles for the β phase was 6-31G(d,p). Table 2.5 shows the average RMSD values 

for the bond lengths and angles for each of the explored basis sets of oxygen. Overall, the basis 

set that most adequately modeled the crystalline structures of the various polymorphs of VOPO4 

was O_8-411d1_2006.  

As demonstrated, the necessity to evaluate multiple basis sets is apparent in the use of 

CRYSTAL09 because a small numerical difference in the description of the molecular orbitals 

greatly affects the accuracy of the simulations. Basis set choice can change the numerical results 

drastically from material to material even in instances where the only change may be in the 

structural morphology of the same material. 

2.3.2     Comparison of Theoretical and Experimental Vibrational Frequencies 

The experimental and calculated infrared spectra are shown in Figures 2.7-2.9, and the 

results are summarized in Tables 2.6–2.8 for each of the phases of VOPO4. Analysis of the 

vibrational modes is shown in Table 2.9. Once again, the various polymorphs exhibited 

sensitivity to the different oxygen basis sets. 

For the α1 phase the basis set that provided the most accurate representation of the 

infrared spectrum was O_8-411d1_2005, while the worst was 6-31G(d,p). For the α2 phase, two 

basis sets most precisely duplicated the infrared spectrum, 6-31G(d,p) and O_8-411d1_2005, 

while the worst was O_6-31d1. For the β phase, the basis set that provided the closest for the 

infrared spectrum was 6-31G(d,p), while the worst was O_6-31d1. The agreements between 
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Table 2.5  Average RMSD values for interatomic bond lengths (Å), angles (°). The average 

does not include the values from α1-VOPO4. The lowest average RMSD values 

are shown in bold. 

 

Bond 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
α1 0.01881 0.02912 0.02714 0.02689 0.02997 
α2 0.01605 0.01952 0.01279 0.00955 0.01783 
β 0.02095 0.01101 0.00951 0.01113 0.00967 

Average 0.01860 0.01988 0.01648 0.01586 0.01916 
 

 
 

Angle 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
α1 1.8846 2.4434 1.9807 1.9960 1.9240 
α2 0.9665 0.3380 0.3172 0.2572 0.4101 
β 1.1416 0.8537 0.6535 0.7364 0.7123 

Average 1.3309 1.2117 0.9838 0.9965 1.0155 
 

 

 



www.manaraa.com

82 
 

 

 

 

Figure 2.7 The normalized experimental and theoretical traces for the infrared vibrational 

spectra of α1-VOPO4. An empirical 11.62 cm-1 full-width-half-maximum 

Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. 
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Figure 2.8 The normalized experimental and theoretical traces for the infrared vibrational 

spectra of α2-VOPO4. An empirical 11.62 cm-1 full-width-half-maximum 

Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. 
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Figure 2.9 The normalized experimental and theoretical traces for the infrared vibrational 

spectra of β-VOPO4. An empirical 11.62 cm-1 full-width-half-maximum 

Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. 



www.manaraa.com

85 
 

 

 

 

 

 

 

 

 

 

Table 2.6  Frequency positions (cm-1) and RMSD (cm-1) of α1-VOPO4 for the experimental 

and theoretical infrared spectra. The blanks are peaks that have no obvious 

correlation between experiment and theory. Lowest RMSD values are shown in 

bold.  

 

Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
424.3 408.8 418.5 408.8 410.8 412.7 
563.1 582.4 590.1 578.5 582.4 580.5 
688.5 676.9 688.5 676.9 678.8 682.7 
941.1 ---- ---- ---- ---- ---- 
971.9 ---- ---- ---- ---- ---- 

1004.7 966.2 1002.8 991.2 993.2 993.2 
1083.8 1078.0 1083.8 1085.7 1089.6 1078.0 
1135.9 1128.2 1164.8 1161.0 1162.9 1164.8 

RMSD 21.6 17.9 16.9 17.6 17.2 
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Table 2.7 Frequency positions (cm-1) and RMSD (cm-1) of α2-VOPO4 for the experimental 

and theoretical infrared spectra. The blanks are peaks that have no obvious 

correlation between experiment and theory. Lowest RMSD values are shown in 

bold. 

 

Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 
605.5 615.2 632.5 615.2 619.0 619.0 
624.8 624.8 640.6 628.7 628.7 632.5 
991.2 985.4 1025.9 1012.4 1014.4 1010.5 
---- 1083.8 1093.4 1087.7 1091.5 1078.0 

1197.6 1176.4 1211.1 1201.4 1205.3 1201.4 
RMSD 12.0 24.3 12.0 14.1 12.5 
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Table 2.8  Frequency positions (cm-1) and RMSD (cm-1) of β-VOPO4 for the experimental 

and theoretical infrared spectra. The blanks are peaks that have no obvious 

correlation between experiment and theory. Lowest RMSD values are shown in 

bold. 

 

Experiment 6-31G(d,p) 6-31d1 8-411d1_2005 8-411d1_2006 8-411d11G 

424.3 435.8 443.5 433.9 433.9 433.9 
482.1 486.0 497.5 480.2 482.1 484.0 
563.1 --- --- --- --- --- 
603.6 594.0 599.8 586.3 586.3 586.3 
632.5 626.8 642.2 626.8 626.8 628.7 
686.5 669.2 682.7 659.5 661.5 663.4 
944.9 935.3 964.2 956.5 956.5 954.6 
973.9 958.4 983.5 971.9 971.9 971.9 

1002.8 1006.7 1043.3 1024.0 1024.0 1024.0 
1083.8 1082.8 1091.5 1084.8 1084.8 1076.1 
1132.0 1124.3 1133.9 1120.4 1120.4 1112.7 
1214.9 1197.6 1218.8 1201.4 1201.4 1199.5 

RMSD 10.8 16.3 13.7 13.3 14.0 
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Table 2.9  Empirical normal mode analysis for the polymorphs of vanadium phosphate.  

 

α1-VOPO4 Normal Mode 
 

β-VOPO4 Normal Mode 
424.3 JK5L + JM5L 

 
424.3 JK5L + JM5L 

563.1 JK5L 
 

482.1 JK5L + JM5L 

688.5 JK5L 
 

563.1 JK5L + JM5L 
1004.7 �K5LNO  

 
603.6 JK5L + �M5LNO  

1083.8 �M5L 
 

632.5 JK5L 
1135.9 �K5LNO  

 
686.5 JK5L + �M5L 

   
944.9 �K5LNO  

α2-VOPO4 Normal Mode 
 

973.9 �K5LNO  
605.5 JK5L 

 
1002.8 �K5LNO  

624.8 JK5L 
 

1083.8 �K5L + �M5L 

991.2 �K5LNO  
 

1132.0 �M5LNO  

1087.0 �M5L 
 

1214.9 �K5LNO  

1197.6 �K5LNO  
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theory and experiment were all good based on the low RMSD values, but the best overall 

performer was the O_8-411d1_2005 basis set.  

Each phase has a different number of peaks in the range between 400 and 1500 cm-1. 

When an empirically-determined Lorentzian line shape with a full width at half-maximum of 

11.62 cm-1 is added to the theoretical line spectra, the low intensity peaks and the strong peaks 

coalesce to give a representation that can be easily compared to the experimental IR spectra 

shown in Figures 2.7–2.9. This allows correlations between theory and experiment to be readily 

made. 

From the experimental spectrum for the α1 phase, eight peaks are observed, while in the 

theoretical only six are obtained. Two peaks that are apparent in the experimental spectrum and 

not in the theoretical spectrum occur at 941.1 cm-1 and 971.9 cm-1. These two peaks can be 

explained as a possible consequence of the sample not being fully dehydrated prior to the 

spectrum being recorded or the conversion of the α1 phase back to the starting dihydrate. The 

higher frequency peak is the result of the 1004.7 cm-1 peak shifting to 971.9 cm-1, and the peak at 

941.1 cm-1 corresponds to a major peak in the hydrated form VOPO4·2H2O as suggested in 

previous literature.29,30 

In the experimental spectrum for the α2 phase, four peaks are observed, while in the 

simulation, five are obtained. The theoretical spectrum places a peak at ~1086 cm-1, which is not 

observed in the experimental spectrum. This is most likely due to the peak being hidden within 

the bandwidth of the observed 991 cm-1 peak.  

From the experimental spectrum for the β phase, 13 peaks are observed, while in the 

theoretical spectrum only 12 were predicted. In all of the spectra, one peak is missing as they all 

lack a feature to be correlated with the 563.1 cm-1 experimental absorption. This 563.1 cm-1 peak 
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most likely originates from VOPO4·2H2O contamination which has been reported to contain a 

569 cm-1 vibration.30 It should be noted that in the 6-31G(d,p), O_8- 411d1_2005, and          

O_8-411d1_2006 basis set spectra the peak at 1083 cm-1 is split into two separate peaks, so for 

comparison to the experimental results, the two peaks are averaged and are reported in Table 

2.8. 

2.4     Conclusions 

The solid-state simulation of the crystalline structures and vibrational frequencies of three 

phases of VOPO4 have been performed using several different basis sets describing the electron 

density associated with the oxygen atoms. This was done to illustrate that small differences in the 

molecular orbital descriptions have dramatic effects on the accuracy of computational 

investigations.  

For the three phases of vanadium phosphate, there was a trend in the best performing 

basis set through each of the numerical comparisons: bond length, angle, and IR frequencies. The 

basis set that overall preformed the best was O_8-411d1_2005, while the worst overall performer 

was O_8-31d1. The α1 phase had the highest discrepancies between the theoretical and 

experimental values. This is most likely due to the suspect literature values for the atomic 

positions of the atoms within the unit cell, requiring bond length and angle correlations based on 

those of a structure modified from α-VOSO4 and not α1-VOPO4. However, the experimentally 

obtained IR spectrum of α1-VOPO4 can be directly compared to that of the theoretical spectrum 

suggesting that the theoretical structure and modified experimental structure are in good 

agreement. Based on the consistencies for the α2 and β phases, the basis set that best represents 

the experimental bond lengths and angles also represents the best correlation with the infrared 

spectrum. Therefore, it can be concluded that the atomic positions obtained from the             
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O_8- 411d1_2005 basis set are closer to the actual positions then those assumed by the current 

literature for α1-VOPO4. However, without experimental verification from the solution of the 

powder diffraction data for the α1-VOPO4, this cannot be corroborated.  

While there appears to be a large deviation between the α1 and α2 phases, based primarily 

on the position of the vanadium within the octahedral unit, the differences between the α1 and β 

phase are much more subtle. The infrared spectra are very similar with the majority of the most 

intense peaks located at similar frequencies. The bond lengths were also very similar in each 

case. These structural similarities could be the possible explanation for why the facile 

transformation of the α1 phase into the β phase, while the α2 phase does not transform to β.3 
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Chapter 3 

 

Using Terahertz Spectroscopy and Solid-State Density Functional 

Theory to Characterize a New Polymorph of 5-(4-pyridyl)tetrazole 
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3.1     Introduction 

Polymorphism at its simplest definition is a phenomenon associated with different 

packing arrangements of the same molecule in the solid state. Polymorphism can occur in every 

area of chemistry ranging from organic to inorganic compounds as well as synthetic and natural 

polymers.1 In many compounds, polymorphs can arise in a variety of ways,2 for example re-

crystallization at different temperatures3,4 or using different solvents.5 The uniqueness of 

polymorphs does not limit itself to structure alone, but the physical properties can vary 

drastically as well. For example, different polymorphs can have large differences in solubility, 

melting point or drug reactivity; this makes identification of polymorphs a major concern for 

many implementations especially in the pharmaceutical industry.6-8  

In this study a new form of 5-(4-pyridyl)tetrazole (β) has been discovered and compared 

to the previously determined structure (α). 9 5-(4-Pyridyl)tetrazole (4PT) belongs to a class of 

nitrogen containing heterocycles that have the highest nitrogen content and has primarily found 

its use as a  bridging ligand in the synthesis of metal-organic frameworks.10  The two distinct 

forms of 5-(4-pyridyl)tetrazole differ primarily in their packing, with the α form crystallizing in 

the monoclinic space group Cc and the β form crystallizing in the monoclinic space group P21/n. 

The comparison of the two different  unit cells is shown in Figure 3.1. α-4PT consists of  one 

distinct zigzagging hydrogen bonded strand running co-directionally with adjacent chains, 

primarily along the c axis. Unlike α-4PT, β-4PT consists of two distinct zigzagging hydrogen 

bonded strands running antiparallel along the c axis, as shown in Figure 3.2.  

Terahertz (THz) spectroscopy was utilized in this study because it has been previously 

used to investigate polymorphs of molecular crystals where the terahertz absorption is caused by 

lattice vibrations unique to three-dimensional ordered solids.11-13 Unlike near-IR vibrational  
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Figure 3.1  Ball and Stick representation of the molecular cell of the α and β forms of 5-(4-

pyridyl)tetrazole. (Carbon is shown in black, nitrogen is shown in light blue and 

hydrogen is shown in pink)  
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Figure 3.2  Ball and stick representation of the molecular packing of the α and β forms of 5-

(4-pyridyl)tetrazole displaying the differences in hydrogen bonded 5-(4-

pyridyl)tetrazole chains. (Carbon is shown in black, nitrogen is shown in light 

blue, hydrogen is shown in pink, and hydrogen bonding shown with red dashed 

lines)  
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spectroscopy, there are no characteristic group frequencies in the THz region; therefore, to 

determine what vibrations lead to these intermolecular absorptions has fallen on computational 

approaches, primarily solid-state density functional theory (DFT).14-16  

The solid-state DFT approach that was used in this study is implemented in 

CRYSTAL09. We have previously used CRYSTAL09  with great success in the simulations of 

similar compounds including hydrohalide salts of 5-(4-pyridyl)tetrazole17 and isomorphous metal 

complexes with 5-(4-pyridyl)tetrazole.18 In this study, CRYSTAL09 was used to replicate the 

geometric parameters of the previously known and newly discovered polymorphs of 5-(4-

pyridyl)tetrazole. Furthermore, CRYSTAL09 was used to determine the vibrationally active 

modes in the THz region and to evaluate the normal modes that are the result of these 

absorptions. 

3.2     Experimental and Theoretical Methods 

3.2.1     Experimental  

3.2.1.1     Synthesis of Polymorphic Forms of 5-(4-pyridyl)tetrazole 

 All reagents were purchased from their respective vendors and used without further 

purification. Water was distilled above 3.0 MΩ in-house using a Barnstead Model 525 Biopure 

Distilled Water Center. Crude 5-(4-pyridyl)tetrazole was prepared using previously published 

methods.19 The infrared spectra were obtained on a Thermo Nicolet IR200 FT-IR using the KBr 

pellet method and a spectral resolution of 2 cm-1 over the range of 4000-400 cm-1. The KBr was 

dried prior to usage 

 

 



www.manaraa.com

99 
 

3.2.1.2     Recrystallization of the α Form of 5-(4-pyridyl)tetrazole (α-4PT) 

To obtain the α form of 5-(4-pyridyl)tetrazole, the crude 5-(4-pyridyl)tetrazole was 

allowed to crystallize by slow evaporation from ethanol.10 α-4PT was confirmed using single-

crystal X-ray diffraction. 

3.2.1.3     Recrystallization of the β Form of 5-(4-pyridyl)tetrazole (β-4PT) 

The β form was obtained by placing crude 5-(4-pyridyl)tetrazole (0.1 g, 0.68 mmol) and 

water (10 mL, 556 mmol) into a 23 ml poly(tetrafluoroethylene) lined stainless steel container. 

The pH was adjusted with NaOH to a pH of ~6 using pHydrion vivid 1-11® pH paper. The 

stainless steel container was heated at 80°C for 24 hrs. under autogenous pressure. Colorless rods 

were obtained suitable for X-Ray Diffraction were isolated. IR (KBr pellet, cm-1): 3434(br), 

3100(w), 2528(br), 2103(w), 2016(w), 1631(s), 1529(m), 1440(m), 1387(m), 1290(w), 1200(w), 

1143(w), 1040(m), 992(w), 846(m), 752(m), 527(m), 459(s).   

3.2.2     X-Ray Crystallography 

Crystallographic data for α-4PT was collected on a Bruker-AXS SMART-CCD 

diffractometer using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å).20 

Crystallographic data for β-4PT was collected on a Bruker KAPPA APEX DUO diffractometer 

using Mo-Kα radiation (λ = 0.71073Å) containing an APEX II CCD system.21 All data 

collections were taken at low temperature (90K).  The data was corrected for Lorentz and 

polarization22 effects, and adsorption corrections were made using SADABS.23 Structures were 

solved by direct methods.  Refinements for each structure were carried out using the 

SHELXTL24 crystallographic software.  Following assignment of all non-hydrogen atoms, the 
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models were refined against F2 first using isotropic and then using anisotropic thermal 

displacement parameters.  The hydrogen atoms were introduced in calculated positions and then 

refined isotropically.  Neutral atom scattering coefficients along with anomalous dispersion 

corrections were taken from the International Tables, Vol. C.   

3.2.3 Time-domain Terahertz Spectroscopy 

The experimental terahertz spectra of the compounds were acquired using a pulsed time-

domain THz spectrometer based on an amplified femtosecond Ti:Sapphire laser system operating 

in the near-infrared region.  For the generation and detection of THz radiation, the instrument 

utilized optical rectification24,25 and free space electro-optic sampling,26,27 respectively.  A 

detailed description of the spectrometer along with the experimental setup has been provided 

elsewhere.28-30   

The 5-(4-pyridyl)tetrazole polymorphs were used without further purification and were 

mixed with a spectroscopic grade powdered polytetrafluoroethylene (PTFE) matrix.  The sample 

and the matrix were then mechanically pulverized using a stainless-steel ball mill (Dentsply Rinn 

3110-3A), allowing a homogeneous distribution of the sample through the matrix, thereby 

reducing the particle size, and minimizing radiation scattering.30,31 The mixture was then pressed 

into a pellet at 2000 psi using a hydraulic press (ICL E-Z Press 12).  The resulting sample pellet 

had a total mass of approximately 0.55 g, thickness of ~2.0 mm, and a diameter of 13.0 mm.  The 

final sample pellets contained 0.67% w/w α-4PT and 0.73% w/w β-4PT.  The blank (reference) 

pellet was prepared with pure PTFE in a similar manner. 

The sample and blank pellets were both held under vacuum in a variable-temperature 

cryostat and held at temperatures of 293 K (room temperature) and 78 K (liquid-nitrogen 

temperature).   
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Each individual spectrum of the sample (or the blank pellet) consisted of an average of 36 

THz-waveform scans over a time window of ~30 ps.  These waveforms were then symmetrically 

zero-padded to a total of 6000 data points, and subsequently were Fourier-transformed (utilizing 

a Hanning window function) into the frequency-domain.  Elimination of any THz absorption by 

the PTFE matrix was accomplished by taking a ratio of the transformed spectrum of a PTFE 

blank versus the transformed spectrum of a sample pellet.  To improve the final signal-to-noise 

ratio, four blank/sample sets were collected and averaged, over a range of 10 to 95 cm-1 with a 

spectral resolution of approximately 1.0 cm-1, yielding the THz spectra reported here.  

3.2.4 Theoretical Methodology of CRYSTAL09 

Geometry optimizations, harmonic frequencies, and intensity calculations  

were performed using the CRYSTAL09 program.32,33 All calculations were performed using a 

spin restricted B3LYP34 hybrid density functional. The basis set used for all atoms was a 

Gaussian type triple valence basis set with polarization (pob_TZVP).35 

The positions of the atoms contained within the unit cell were optimized within the 

constraints of the literature lattice parameters and space group symmetry. From the optimized 

structures, the bond lengths and bond angles were determined and compared with the 

experimental crystallographic results. After optimizing the structures, harmonic-limit normal-

mode analyses on the polymorphs were conducted. Frequencies were determined by 

diagonalization of the mass-weighted Hessian matrix to obtain eigenvalues which were then 

converted into frequencies and eigenvectors.33 The hessian matrix in CRYSTAL is obtained by 

the numerical differentiation of the analytical gradient of the energy with respect to the atomic 

position. 36 Lastly, the intensities were calculated through the Berry phase approach.33 To 

facilitate comparison of the theoretical spectra with experiment, a Lorentzian line shape (based 
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upon the average experimentally measured line width determined from simple least squares 

fitting) was convoluted with the simulated absorptions. This resulted in an empirical 3.0 cm-1 and 

6.0 cm-1 full-width-half-maximum Lorentzian line shape being applied to the theoretical data of 

the α and β forms of 5-(4-pyridyl)tetrazole, respectively. 

Several of the convergence parameters were changed to optimize the accuracy and  

computational time of the calculations. The convergence criteria were modified to set the root 

mean square of the maximum gradient (TOLDEG) and the maximum displacement (TOLDEX) 

to be 1 x 10-5 and 4 x 10-5  angstroms, respectively. To improve the numerical accuracy of the 

calculations the truncation criteria for bielectronic integrals (TOLINTEG) was set to 8 8 8 8 16 

and the DFT integration was set to XLGRID (75,974). (See Ref. [32,33] for details). Total 

energy convergence (TOLDEE) was set to ∆E < 1 x 10-8 Hartree for the geometry optimizations 

and ∆E < 1 x 10-11 Hartree for frequency analyses. To assist in a timely convergence, the 

“Fock/KS matrix mixing” (FMIXING) was increased from the default value of zero to 50 for all 

systems. The eigenvalue level shifter was also activated with the level shifter set to a value that 

corresponds to a shift of 0.5 Hartree, and the state was locked, confining it to an insulating state. 

Determination of the optimum sampling of reciprocal space was determined by comparing the 

total energy of the converged system to the k-point count using the keyword SHRINK. The 

optimum SHRINK value was determined to be SHRINK = 6 6 which corresponds to 80 points in 

the irreducible part of the Brillouin Zone and 80 points in the Gilat Net. 
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3.3     Results and Discussion 

3.3.1     X-Ray Crystallography 

Images of the crystal structures were generated using CrystalMaker®.37 ORTEP plots of 

α-4PT and β-4PT are available as supplemental materials and are displayed in Figure A-3 and 

Figure A-4. 

3.3.1.1     X-Ray Crystallography of the α Form of 5-(4-pyridyl)tetrazole (α-4PT) 

In order to accurately compare the experimentally collected data to the theoretical data, it 

was necessary to use unit cell parameters and atomic positions from a crystal structure that has 

been determined near the same temperature at which the THz spectroscopy has been performed. 

The previously published crystal structure for α-4PT was determined at 298K; therefore, it was 

necessary to collect a crystal structure at 90K, to be able to more accurately represent the THz 

spectrum collected at 78K. The structure was found to be isostructural with the published room 

temperature collection; however, the unit cell parameters are contracted slightly as expected. α-

4PT crystalized in the Cc space group with unit cell dimensions of a = 7.0093(8) Å, b = 

7.4477(8) Å, c = 11.8983(13) Å, α = γ = 90.0°, and β = 95.230(2).  

3.3.1.2     X-Ray Crystallography of the β Form of 5-(4-pyridyl)tetrazole (β-4PT) 

The molecular structure of β-4PT crystallizes in the monoclinic space group P21/n. 

Crystallographic details for β-4PT are provided in Table 3.1. 
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Table 3.1  Summary of crystallographic data for the β form of 5-(4-pyridyl)tetrazole (β-4PT)  

 

 β-4PT 
Empirical Formula C6 H5 N5 
Formula Weight 147.15 
Crystal System Monoclinic 
Space Group P21/n 
a (Å) 8.9109(10) 
b (Å) 7.4034(8) 
c (Å) 9.5135(10) 
α (°) 90 
β(°) 92.662(2) 
γ(°) 90 
V(Å3) 626.94(12) 
Z 4 
Dcalc(g cm-3) 1.559 
µ (mm-1) 0.109 
T (K) 90(2) 
Wavelength 0.71073 
R1

a 0.0346 
wR2

b 0.0878 
 

a R1 = Σ|Fo| - |Fc|/Σ|Fo|. 
b wR2 = {Σ[w(Fo

2 - Fc
2)2]/Σ[w(Fo

2)2]}1/2 
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3.3.2     Comparison of the Calculated and Experimental Structures 

 The calculated and experimental bond lengths, bond angles, and the root-mean-squared 

deviation (RMSD) values are shown in Table 3.2 and Table 3.3 for α-4PT and β-4PT, 

respectively, and the results are visualized in Figure 3.3.  The bond lengths were modeled for 

both complexes with a very reasonable amount of accuracy, replicating each of the bonds, within 

±0.016Å for the α and β forms of 5-(4-pyridyl)tetrazole. The only significant deviations were 

found in the nitrogen-nitrogen distances of the tetrazolate ring, which were overestimated in both 

polymorphs by a similar amount. 

The angles were also modeled with a fair degree of accuracy, as shown by the low 

RMSDs. The calculated RMSDs for the α-4PT and β-4PT complexes were 0.5926° and 0.6406°, 

respectively. It is important to note that in these systems four torsion angles were included which 

correspond to the torsion angles between the pyridyl and tetrazolate rings. This torsion angle 

differs by ~3 degrees between the two polymorphs, which is reproduced by the theoretical 

model. The α-4PT polymorph has smaller torsion angles than the β-4PT polymorph, resulting in 

an arrangement that is closer to a planar conformation. This suggests that there might be more 

overlap of the π orbitals between the two ring systems in the α polymorph. 

To evaluate the energy difference between the two polymorphs additional single-

molecule calculations were performed on the molecular components of the crystals. In order to 

accomplish this, a molecule was isolated from the optimized bulk crystal and studied using the 

same theoretical methods used for the periodic solid. In addition, estimations of basis set 

superposition error (BSSE) were approximated using the counterpoise method.38 For periodic 

boundary condition simulations, a spatial cutoff must be defined for inclusion of neighboring 

basis functions in the counterpoise calculation; in this work, 300 atoms within 5.0 Å of the  
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Table 3.2  Interatomic bond lengths (Å), angles (°), and RMSD values for the α form of 5-

(4-pyridyl)tetrazole (α-4PT). See Figure 3.3 for atomic labels. Experimental 

parameters are from 90K crystallographic data. 

 

Bond, Å Experimental Theoretical Angle, ° Experimental Theoretical 

N1-C1 1.3482 1.3463 C1-N1-C5 121.421 121.676 
N1-C5 1.3479 1.3429 N3-N2-C6 104.501 105.345 
N2-N3 1.3434 1.3592 N2-N3-N4 109.201 108.654 
N2-C6 1.3456 1.3417 N3-N4-N5 109.665 109.140 
N3-N4 1.3251 1.3404 N4-N5-C6 104.632 105.170 
N4-N5 1.3437 1.3571 N1-C1-C2 120.208 119.965 
N5-C6 1.3311 1.3412 C1-C2-C3 119.995 119.847 
C1-C2 1.3698 1.3731 C2-C3-C4 118.192 118.384 
C2-C3 1.4069 1.3959 C2-C3-C6 122.942 122.648 
C3-C4 1.3923 1.3949 C4-C3-C6 118.866 118.968 
C3-C6 1.4625 1.4561 C3-C4-C5 119.707 119.726 
C4-C5 1.3781 1.3690 N1-C5-C4 120.473 120.395 

 RMSD 0.00945 N2-C6-N5 111.998 111.686 
N2-C6-C3 125.707 125.963 
N5-C6-C3 122.284 122.350 

C2-C3-C6-N2 2.478 0.929 
C2-C3-C6-N5 -178.841 -178.603 
C4-C3-C6-N2 -177.589 -179.025 
C4-C3-C6-N5 1.091 1.443 

 RMSD 0.5926 
 
 
 
 
 
 
 
 
 



www.manaraa.com

107 
 

 
 
 
 
 
 
 
Table 3.3  Interatomic bond lengths (Å), angles (°), and RMSD values for the β form of 5-

(4-pyridyl)tetrazole (β-4PT). See Figure 3.3 for atomic labels. Experimental 

parameters are from 90K crystallographic data. 

 

Bond, Å Experimental Theoretical Angle, ° Experimental Theoretical 

N1-C1 1.3446 1.3459 C1-N1-C5 121.711 121.804 
N1-C5 1.3406 1.3423 N3-N2-C6 104.893 105.265 
N2-N3 1.3471 1.3609 N2-N3-N4 109.214 108.617 
N2-C6 1.3411 1.3417 N3-N4-N5 109.535 109.204 
N3-N4 1.3261 1.3404 N4-N5-C6 104.844 105.098 
N4-N5 1.3432 1.3576 N1-C1-C2 120.247 120.024 
N5-C6 1.3427 1.3407 C1-C2-C3 119.636 119.640 
C1-C2 1.3728 1.3730 C2-C3-C4 118.428 118.554 
C2-C3 1.4011 1.3969 C2-C3-C6 122.783 122.614 
C3-C4 1.3960 1.3940 C4-C3-C6 118.777 118.821 
C3-C6 1.4649 1.4561 C3-C4-C5 119.528 119.701 
C4-C5 1.3755 1.3698 N1-C5-C4 120.450 120.274 

 RMSD 0.00787 N2-C6-N5 111.514 111.815 
N2-C6-C3 126.128 126.033 
N5-C6-C3 122.356 122.151 

C2-C3-C6-N2 5.401 5.846 
C2-C3-C6-N5 -174.041 -175.416 
C4-C3-C6-N2 -175.898 -173.748 
C4-C3-C6-N5 4.661 4.992 

 RMSD 0.6406 
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Figure 3.3  Calculated bond-length differences for the α and β forms of 5-(4-pyridyl)tetrazole. 

The inset figure shows the atom labeling for the α and β forms of 5-(4-

pyridyl)tetrazole. 
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molecule being evaluated were used to gauge BSSE effects. Once the isolated molecule energies 

were determined, eq.1 was used to determine the energy of formation per molecule for the solid 

crystal, where EForm denotes the energy of formation, Ebulk represents the energy of the bulk 

solid, Emol is the energy of the isolated molecule and Z is the number of molecules in the unit 

cell. 

    (eq. 3.1) 

 The values for the formation energy are summarized in Table 3.4. It was discovered that 

the energy associated with the formation of α-4PT is greater by ~0.25 kJ/mol, meaning that this 

form of 5-(4-pyridyl)tetrazole is the energetically more stable polymorph.  

 This small difference in formation energy inspired the investigation of the 

thermodynamic parameters to determine what effect the temperature had on the Gibbs free 

energy of these two systems.36,39 The Gibbs free energy per molecule in the unit cell was 

determined according to eq. 3.2, where El is the electronic energy, E0 is the zero-point energy, 

ET is the thermal contribution to the vibrational energy, PV is pressure * volume, TS is the 

temperature * entropy, and lastly Z is the number of molecules in the unit cell. 

        (eq. 3.2) 

The Gibbs free energy was determine at a constant pressure of 1 atm and was calculated 

at temperatures ranging from 10K to 400 K, and the results are summarized in Figure 3.4. While 

the exact phase transition temperature cannot be determined without a much more thorough 

investigation, a clear trend can be seen. The α form is much more stable at low temperatures, but  
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Table 3.4  Calculated formation energies per molecule for the α (α-4PT) and β (β-4PT) 

forms of 5-(4-pyridyl)tetrazole, based on the geometrically optimized structures. 

The values of the formation energy are derived from eq. 1. 

 

 
Ebulk (Eh) Emol (Eh) 

EForm
 

per Molecule (Eh) 
EForm

 

per Molecule (kJ/mol) 

α-4PT -1010.373832 -505.133134 -0.053782 -141.20553 

β-4PT -2020.744686 -505.132483 -0.053689 -140.95945 

  
Absolute Difference 9.3729E-05 0.246086 

 



www.manaraa.com

111 
 

 

 

 

Figure 3.4  The theoretically determined Gibbs free energy per molecule for the α and β 

forms of 5-(4-pyridyl)tetrazole as a function of temperature at constant pressure. 
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as temperature is increased, the β form is the more thermodynamically stable polymorph. This 

trend is supported by the experimental conditions necessary to obtain the β form, indicated by the 

temperature needed for the recrystallization of β-4PT. 

3.3.3     Comparison of Theoretical and Experimental Vibrational Frequencies  

As anticipated, the near-infrared (IR) spectra of the two polymorphs are nearly 

indistinguishable, as illustrated in Figure 3.5, therefore the use of THz spectroscopy could prove 

useful in distinguishing these two polymorphs. The normalized THz spectrum for each 

polymorph recorded at cryogenic temperatures (78K) are illustrated in Figure 3.6, and it can be 

seen that while there are no major differences, the changes in the spectra are much clearer than 

those observed in the near-IR spectra. The experimental spectra collected at cryogenic (78K) 

temperatures along with the calculated terahertz spectra are compared in Figure 3.7 and are 

summarized in Table 3.5 and Table 3.6. The comparison of the room temperature terahertz 

spectra and theoretically predicated spectra of the α and β forms of 5-(4-pyridyl)tetrazole are 

shown in Figure A-3. Empirical analysis of the vibrational modes observed using J-ICE40  is 

summarized in Table 3.7. While there is a combination of intramolecular and intermolecular 

motions, only the major motion is listed.  

The theoretically determined terahertz spectrum reproduces a close match to the 

experimentally determined spectrum for both polymorphs. The predicted intensities of the 

theoretically determined spectra were found to be reasonably similar to the experimental 

terahertz spectra, the predicted intensities were found to be underestimated for α-4PT by ~18%,  

while the intensities was greatly overestimated by ~50% for β-4PT. There were no drastic 

differences in the spectra of the polymorphs, with each of the experimental spectra only 

 



www.manaraa.com

113 
 

 

 

 

Figure 3.5  Normalized near-infrared vibration spectra of the α and β forms of 5-(4-

pyridyl)tetrazole shown from 1800-400 cm-1. 
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Figure 3.6  Normalized experimental traces for the terahertz spectra of the α and β forms of 

5-(4-pyridyl)tetrazole recorded at cryogenic temperature (78K) shown from 10-95 

cm-1. 
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Figure 3.7  The cryogenic (78K) experimental and theoretical traces for the terahertz spectra 

of the A) α and B) β forms of 5-(4-pyridyl)tetrazole shown from 10-95 cm-1. An 

empirical 3.0 cm-1 and 6.0 cm-1 full-width-half-maximum Lorentzian line shape 

has been applied to the theoretical data of the α and β forms of 5-(4-

pyridyl)tetrazole, respectively, to aid in comparison. 
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Table 3.5  Frequency positions (cm-1) and percent error for the experimental and theoretical 

terahertz spectra of the α form of 5-(4-pyridyl)tetrazole (α-4PT). The blanks are 

peaks that have no obvious correlation between the observed and theoretical 

spectra. Mode descriptions are described in Table 3.7. 

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity (ε) 

a --- --- 55.00 0.07 
b --- --- 66.69 1.42 
c 87.97 83.45 89.03 57.85 

  
Percent Error 1.28% 
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Table 3.6  Frequency positions (cm-1) and percent error for the experimental and theoretical 

terahertz spectra of the β form of 5-(4-pyridyl)tetrazole (β-4PT). The blanks are 

peaks that have no obvious correlation between the observed and theoretical 

spectra. When multiple peaks corresponded to only one peak in the experimental 

spectra, the weighted average was used in calculating the percent error. Mode 

descriptions are described in Table 3.7.  

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity (ε) 

d 

85.72 84.05 

83.66 0.63 

c 86.47 104.24 

d 89.27 7.85 

d --- --- 94.64 64.94 

e --- --- 99.31 7.81 

  
Percent Error 1.08% 
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Table 3.7  Empirical normal mode analysis of the α and β forms of 5-(4-pyridyl)tetrazole. 

 
 
 

Mode Description 
a Translation along b 
b Molecular Rocking in bc plane 
c Molecular Rotation along a  
d Molecular Rotation + Twisting in ac plane 
e Pyridyl ring twisting along a 
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terahertz spectra, the predicted intensities were found to be underestimated for α-4PT by ~18%,  

while the intensities was greatly overestimated by ~50% for β-4PT. There were no drastic 

differences in the spectra of the polymorphs, with each of the experimental spectra only 

displaying one peak in the measured frequency range, however a shift of ~2 cm-1 in the 

frequency locations from the α to β forms of 5-(4-pyridyl)tetrazole was observed. In addition to 

the shift in the peak location the only other difference is the observed bandwidth of the major 

peak, which is almost twice as large in the β form compared to the α form. This increased 

bandwidth could be explained by the conditions under which the collection was performed. As 

previously demonstrated the alpha form is the more favorable polymorph at the lower 

temperatures used to collect the spectra, therefore during the processing of the sample for 

collection there might have been some interconversion of the β form to the α form of 5-(4-

pyridyl)tetrazole leading to increased inhomogeneous broadening due to higher crystalline 

disorder. This inference could be supported by the abnormal decrease in bandwidth at room 

temperature for the β form, which is slightly less than that measured at cryogenic temperatures. 

This is likely due to less interconversion due to the β form being as thermodynamically stable as 

the α form.  

The theoretical frequencies that made up these spectra were much more complex. The 

theoretically determined frequencies for the α form show an agreeable correlation with the 

experimentally determined spectrum measured at 78K, overestimating the peak by 1.20%, as 

seen in Figure 3.7A. There were three peaks found in the theoretical frequency, the most intense 

peak at 89.03cm-1 could be correlated to the experimentally observed peak. The asymmetric 

shape of the peak in the experimental spectra suggests that there is a secondary component to this 

vibration. This can be corroborated by the theoretical vibrational modes, which suggest that the 
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minor peaks whose intensities were ~2% of the intensity of the major peak could account for the 

broadening of the observed peak. 

The theoretically determined frequencies for the β form shows a slightly better 

correlation with the experimentally determined spectrum measured at 78K, only overestimating 

the peak by 1.08%, as shown in Figure 3.7B. There were five peaks found in the theoretical 

determined frequency modes. Of those five peaks, it was determined that three of them 

encompassed the observed peak, centering at ~86.47cm-1. The remaining two peaks most likely 

correlate to a peak/peaks that lie just outside of the measured range for this investigation.  

Comparing the two theoretically determined spectra, the difference in the major peak 

location has produced a similar shift to that found in the experimental spectra. Furthermore, the 

difference was very similar and in the same order as found experimentally. This reproduction of 

the frequency differences indicated that the difference observed in the experimental spectra was 

indeed due to the changes in packing for each polymorph and not due to experimental variance.   

The empirical visualization of the modes showed that there were five different motions 

exhibited by the two polymorphs. However, there was only one common motion in both forms 

and that is illustrated in Figure 3.8. This motion relates primarily to a whole molecule rotation 

along the a axis. The rest of the motions were all intramolecular motions with the exception of 

the intermolecular mode e, found in the β form at 99.31 cm-1. This mode produced  a twisting 

motion of the pyridyl ring around a mostly motionless tetrazolate ring. 

3.4     Conclusions 

The crystal structure of a new polymorph of 5-(4-pyridyl)tetrazole (β-4PT) was 

determined  using single crystal X-ray diffraction. In addition, the solid-state simulation of the 

geometric and vibrational properties was performed using the CRYSTAL code. The crystal  
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Figure 3.8 Visualization of the vibrational normal mode corresponding to mode c. Arrows 

denote the direction of molecular motion. (Carbon is shown in black, nitrogen is 

shown in blue, and hydrogen is shown in grey)  
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structure revealed that the packing of adjacent hydrogen-bonded chains of β-4PT alternated in 

direction in comparison to the previously known form of 5-(4-pyridyl)tetrazole (α-4PT), where 

the adjacent hydrogen-bonded chains ran parallel to one another. Since these two systems only 

had packing differences with no changes in the molecular structure, they made a prime candidate 

for characterization by terahertz spectroscopy due to its ability to probe lattice vibrations unique 

to molecular crystals.  

By comparing these two systems, we have shown that the compounds have nearly 

identical near-IR vibrations spectra, but also similar THz spectra. The primary difference was an 

apparent redshift in the peak location from the α to β phases of ~ 2cm-1. It was also determined 

that the principal peak in each spectrum was the result of whole molecule rotation along the 

principal axis a. In addition, the energies of formation were compared, and it was found that the 

α form is more stable by ~.25 kJ/mol. This small difference in energy and the observed trend in 

the Gibbs free energy suggests that at elevated temperatures either form can be obtained, 

resulting in the discovery of the new polymorph of  5-(4-pyridyl)tetrazole. 

3.5     Supporting Information 

 The supporting information contains an ORTEP view of the asymmetric unit of α-4PT, 

showing the partial atom-labeling schemes and 50% thermal ellipsoids (Figure A-1). In addition, 

the supporting information contains an ORTEP view of the asymmetric unit of β-4PT, showing 

the partial atom-labeling schemes and 50% thermal ellipsoids (Figure A-2). The supporting 

information also contains the room temperature terahertz spectra compared to the theoretically 

predicated spectra of the α and β forms of 5-(4-pyridyl)tetrazole are shown in Figure A-3. In 

addition, the normalized near-Infrared vibration spectral overlay of the α and β forms of 5-(4-

pyridyl)tetrazole shown from 4000-400 cm-1 (Figure A-4) is included. 
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Additional material available from the Cambridge Crystallographic Data Centre, CCDC 

No. CCDC 960961-960962, comprises the final atomic coordinates for all atoms, thermal 

parameters, and a complete listing of bond distances and angles. Copies of this information may 

be obtained free of charge on application to The Director, 12 Union Road, Cambridge, CB2 2EZ, 

UK, fax: +44 1223 336 033, e-mail: data_request@ccdc.cam.ac.uk or 

http://www.ccdc.cam.ac.uk.  
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Chapter 4 

 

Using Solid-state Density Functional Theory and Terahertz 

Spectroscopy to Spectroscopically Distinguish the Various 

Hydrohalide Salts of 5-(4-pyridyl)tetrazole 

 

 

The material contained within this chapter is published in Journal of Molecular Structure 

(Pellizzeri, S.; Delaney, S. P.; Korter, T.M.; Zubieta, J. J. Mol. Struct. 2013, 1050, 27-34). This 

article has been reproduced with permission from Elsevier. 
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4.1     Introduction 

Stable nitrogen containing heterocycles play important roles in many diverse fields of 

chemistry. Examples of nitrogen containing heterocycle with the highest nitrogen content are the 

tetrazole derived compounds. Tetrazoles play an important role in coordination chemistry, as 

ligands with multiple binding modes to metal centers,1 in material science as a special 

explosive,2,3 and in medical chemistry, where they find a role as a surrogate for carboxyl and 

amide groups.4,5 Tetrazoles can also be easily substituted, in particular the 5-monosubsituted 

tetrazoles are interesting because this substitution can increase their ability to coordinate to 

multiple metal centers to form a more complex material.6 Furthermore, substitution can expand 

their use in medical chemistry due to their ionization at physiological pH values, rendering these 

compounds nearly 10 times more lipophilic than similar carboxylates.7 This study looks at one 

particular 5-monosubsituted tetrazole, 5-(4-pyridyl)tetrazole, which can exist as either the 

zwitterionic free acid8 or as two distinct hydrohalide salts 4-(1H-Tetrazol-5-yl)pyridinium 

chloride (4-PT·HCl)9 and 4-(1H-Tetrazol-5-yl)pyridinium bromide (4-PT·HBr),10 illustrated in 

Figure 4.1. 

The importance of identifying halide salts is more than a curiosity, due to the fact that in 

pharmaceuticals much time and effort is put into salt formation. Salt formation is the most 

common and effective method of increasing solubility and dissolution rates of acidic and basic 

drugs.11 Crystalline salts can also increase the chemical stability and can have higher 

bioavailability relative to the free base or acid of the active compound. Finally, salts and other 

crystal forms (e.g. hydrates, solvates, and cocrystals) of a drug substance are considered distinct 

chemical entities with their own patentable chemical and biological profiles.12,13 In the case of 

the isostructural halide salts of 5-(4-pyridyl)tetrazole, Figure 4.2 shows that near-infrared  
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Figure 4.1  Ball and Stick representation of the molecular cell of 4-(1H-Tetrazol-5-

yl)pyridinium bromide (4-PT·HBr) and 4-(1H-Tetrazol-5-yl)pyridinium chloride 

(4-PT·HCl). (Bromine is shown in dark red, chlorine is shown in green, carbon is 

shown in black, nitrogen is shown in light blue and hydrogen is shown in pink)  
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Figure 4.2  Near-Infrared vibration spectra of 4-PT·HCl and 4-PT·HBr shown from 1600-400 

cm-1. 
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spectroscopy only shows subtle vibrational changes. Therefore, a spectroscopy technique that 

probes low energy molecular motion would prove useful.  

Terahertz (THz) spectroscopy was utilized in this study because it has been previously 

used to investigate polymorphs of molecular crystals where the terahertz absorption is caused by 

lattice vibrations unique to three-dimensional ordered solids.14-16 Unlike near-IR vibrational 

spectroscopy, there are no characteristic group frequencies in the THz region; therefore, 

computational approaches, primarily solid-state density functional theory (DFT).17-19  

The solid-state DFT approach that was used in this study is implemented in 

CRYSTAL09. The CRYSTAL program has been previously used to simulate many inorganic 

systems to determine their structural, electronic, magnetic and vibrational properties,20-23 as well 

as the vibrational spectra of organic systems.24-26 In this study, CRYSTAL09 was used to 

replicate the geometric parameters of the halide salts of 5-(4-pyridyl)tetrazole as well as to 

determine the vibrationally active modes in the THz region and to evaluate the normal modes 

that are the result of these absorptions. Due to the isostructural nature of these complexes any 

differences that are observed in the terahertz spectra can be almost directly related to the anion 

rather than to symmetry or packing differences.    

4.2     Experimental and Theoretical Methods 

4.2.1     Experimental  

4.2.1.1     Synthesis of Halide Salts of 5-(4-pyridyl)tetrazole 

 All reagents were purchased from their respective vendors and used without further 

purification. Water was distilled above 3.0 MΩ in-house using a Barnstead Model 525 Biopure 

Distilled Water Center. 5-(4-pyridyl)tetrazole was prepared using previously published 
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methods.27 To obtain the hydrochloride salt of 5-(4-pyridyl)tetrazole, the crude                           

5-(4-pyridyl)tetrazole was acidified with a water/HCl solution to a pH of about 2, then allowed to 

crystallize by slow evaporation. The hydrobromide salt was obtained using literature methods.10 

All halide salts of 5-(4-pyridyl)tetrazole were confirmed using single-crystal X-ray diffraction. 

The infrared spectra were obtained on a Thermo Nicolet IR200 FT-IR using the KBr pellet 

method and a spectral resolution of 2 cm-1 over the range of 4000-400 cm-1. The KBr was dried 

prior to usage 

4.2.1.2     X-Ray Crystallography 

Crystallographic data for all compounds were collected on a Bruker KAPPA APEX DUO 

diffractometer using Mo-Kα radiation (λ = 0.71073 Å) containing a APEX II CCD system.28 All 

data collections were taken at low temperature (90 K). The data were corrected for Lorentz and 

polarization29 effects, and adsorption corrections were made using SADABS.30 Structures were 

solved by direct methods. Refinements for each structure were carried out using the SHELXTL31 

crystallographic software. Following assignment of all non-hydrogen atoms, the models were 

refined against F2 first using isotropic and then using anisotropic thermal displacement 

parameters. The hydrogen atoms were introduced in calculated positions and then refined 

isotropically. Neutral atom scattering coefficients along with anomalous dispersion corrections 

were taken from the International Tables, Vol. C.  

4.2.2     Time-domain terahertz spectroscopy 

The experimental terahertz spectra of the compounds were acquired using a pulsed time-

domain THz spectrometer based on an amplified femtosecond Ti:Sapphire laser system 

operating in the near-infrared region. For the generation and detection of THz radiation, the 
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instrument utilized optical rectification32,33 and free space electro-optic sampling,34,35 

respectively. A detailed description of the spectrometer along with the experimental setup has 

been provided elsewhere.25,36,37  

The 5-(4-pyridyl)tetrazole halide salts were used without further purification and were 

mixed with a spectroscopic grade powdered polytetrafluoroethylene (PTFE) matrix. The sample 

and the matrix were then mechanically pulverized using a stainless-steel ball mill (Dentsply Rinn 

3110-3A), allowing a homogeneous distribution of the sample through the matrix, thereby 

reducing the particle size, and minimizing radiation scattering.37,38 The mixture was then pressed 

into a pellet at 2000 psi using a hydraulic press (ICL E-Z Press 12). The resulting sample pellet 

had a total mass of approximately 0.55 g, thickness of ~2.0 mm, diameter of 13.0 mm. The final 

sample pellets contained 1.57% w/w 4-PT·HBr and 0.57% w/w 4-PT·HCl. The blank (reference) 

pellet was prepared with pure PTFE in a similar manner. 

The sample and blank pellets were both held under vacuum in a variable-temperature 

cryostat and held at tempera.tures of 293 K (room temperature) and 78 K (liquid-nitrogen 

temperature).  

Each individual spectrum of the sample (or the blank pellet) consisted of an average of 36 

THz-waveform scans over a time window of ~30 ps. These waveforms were then symmetrically 

zero-padded to a total of 6000 data points, and subsequently were Fourier-transformed (utilizing 

a Hanning window function) into the frequency-domain. Elimination of any THz absorption by 

the PTFE matrix was accomplished by taking a ratio of the transformed spectrum of a PTFE 

blank versus the transformed spectrum of a sample pellet. To improve the final signal-to-noise 

ratio, four blank/sample sets were collected and averaged, over a range of 10 to 100 cm-1 with a 

spectral resolution of approximately 1.0 cm-1, yielding the THz spectra reported here.  
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4.2.3     Theoretical Methodology of CRYSTAL09 

Geometry optimizations, harmonic frequencies, and intensity calculations were 

performed using the CRYSTAL09 program.39,40 All calculations were performed using a spin 

restricted B3LYP41 hybrid density functional. The basis set chosen for all the atoms was a 

Gaussian type triple valence basis set with polarization (pob_TZVP).42 

The positions of the atoms contained within the unit cell were optimized within the 

constraints of the literature lattice parameters and space group symmetry. From the optimized 

structures, the bond lengths and bond angles were determined and compared with the 

experimental crystallographic results. After optimizing the structures, harmonic-limit normal-

mode analyses on the organometallic complexes were conducted. Frequencies were determined 

by a mass-weighted numerical evaluation of the Hessian matrix43 and intensities were calculated 

through the Berry phase approach.40  

Several of the convergence parameters were changed to optimize the accuracy and 

computational time of the calculations. The convergence criteria were modified to set the root 

mean square of the maximum gradient (TOLDEG) and the maximum displacement (TOLDEX) 

to be 1 x 10-5 and 4 x 10-5 angstroms, respectively. To improve the numerical accuracy of the 

calculations the truncation criteria for bielectronic integrals (TOLINTEG) was set to 8 8 8 8 16 

and the DFT integration was set to XLGRID (75,974). (See Ref. [39,40] for details). Total 

energy convergence (TOLDEE) was set to ∆E < 1 x 10-8 Hartree for the geometry optimizations 

and ∆E < 1 x 10-11 Hartree for frequency analyses. To assist in a timely convergence, the 

“Fock/KS matrix mixing” (FMIXING) was increased from the default value of zero to 50 for all 

systems. The eigenvalue level shifter was also activated with the level shifter set to a value that 

corresponds to a shift of 0.5 Hartree, and the state was locked, confining it to an insulating state. 
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Determination of the optimum sampling of reciprocal space was determined by comparing the 

total energy of the converged system to the k-point count using the keyword SHRINK. The 

optimum SHRINK value was determined to be SHRINK = 7 7 which corresponds to 100 points 

in the irreducible part of the Brillouin Zone and 100 points in the Gilat Net.  

4.3     Results and Discussion 

4.3.1     X-Ray Crystallography 

In order to accurately compare the experimentally collected data to the theoretical data, it 

is necessary to use unit cell parameters and atomic positions from a crystal structure that has 

been determined near the same temperature at which the THz spectroscopy has been performed. 

The previously published crystal structures for 4PT·HCl and 4PT·HBr were determined at      

298 K, therefore, it was necessary to collect crystal structures at 90K, to be able to more 

accurately represent the THz spectrum collected at 78K. Both structures were found to be 

isostructural with the published room temperature collections; however, the unit cell parameters 

are contracted slightly as expected. 4PT·HCl crystalized in the P21 space group with unit cell 

dimensions of a = 4.8308(6) Å, b = 7.5921(9) Å, c = 10.6871(12) Å, α = γ = 90.0°, and                

β = 91.954(10) °. 4PT·HBr crystalized in the P21 space group with unit cell dimensions of          

a = 4.8374(6) Å,b = 7.6897(10) Å, c = 11.0160(15) Å, α = γ = 90.0°, and β = 91.427(2) °. Both 

crystallize in similar morphologies with the 4PT·HBr being slightly expanded in the b and c axis 

due to the larger size of the bromide ion in comparison to the chloride ion.  
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4.3.2     Comparison of the Calculated and Experimental Structures 

 The calculated and experimental bond lengths, bond angles, and the root-mean-squared 

deviation (RMSD) values are shown in Table 4.1 and Table 4.2 for 4PT·HCl and 4PT·HBr, 

respectively for each complex, and the results are visualized in Figure 4.3. The halogen nitrogen-

distance was included since these complexes are held together through hydrogen bonding from 

the protonated pyridal nitrogen to the halogen anion, as well as from the protonated tetrazole 

nitrogen to the halogen anion, as illustrated in Figure 4.4. The halogen-nitrogen distance was 

used and not the hydrogen-halogen distance, because the hydrogen atoms in the experimental 

structure are positioned at calculated positions leading to uncertainty in their position, which is 

not the case for the nitrogen atoms.   

The bond lengths were modeled for both complexes with a very reasonable amount of 

accuracy, replicating each of the bonds, with the exception of X-N1(X = Cl or Br), within ±0.025 

Å for 4PT·HCl and 4PT·HBr. The X-N1 bond was overestimated in both cases by a reasonable 

amount, +0.051 Å for 4PT·HCl and +0.085 Å for 4PT·HBr; however, the X-N2 bond was very 

closely replicated in the theoretical structure. This discrepancy suggests that the halogen anion is 

extending along the hydrogen bonded chain as shown in Figure 4.4 to increase the angle 

between X-H-N2 to get the bond angle closer to the ideal 180° for hydrogen bonding, Cl(Br)-H-

N2 increases from 158.8(2)°(159.3(2)°) in the experimental structure to 170.29°(171.98°) in the 

theoretical structure. This would be consistent with the already nearly ideal angle between X-H-

N1, which for the chloride(bromide) does not deviate much from 177.0(2)°(177.9(2)°) in the 

experimental structure to 178.0°(180.0°) in the theoretical structure. Therefore, there is a 

competition between the inherent packing forces and ideal hydrogen bonding in the 

crystallographic structure; however, in the theoretically derived structure the drive  
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Table 4.1  Interatomic bond lengths (Å), angles (°), and RMSD values for 4PT·HCl. See 

Figure 4.3 for atomic labels. Experimental parameters are from 90 K 

crystallographic data. 

 

Bond, Å Experimental 4PT·HCL 
 

Angle, ° Experimental 4PT·HCL 

Cl-N1 3.0739 3.1245 
 

N1-Cl-N2 90.249 88.89 

Cl-N2 3.0381 3.0489 
 

C1-N1-C5 122.400 122.623 

N1-C1 1.3435 1.3426 
 

N3-N2-C6 109.566 108.628 

N1-C5 1.3460 1.3446 
 

N2-N3-N4 106.134 106.196 

N2-N3 1.3354 1.3587 
 

N3-N4-N5 109.805 110.192 

N2-C6 1.3281 1.3407 
 

N4-N5-C6 105.855 106.062 

N3-N4 1.3203 1.3177 
 

N1-C1-C2 119.703 119.950 

N4-N5 1.3666 1.3706 
 

C1-C2-C3 119.162 118.943 

N5-C6 1.3242 1.3258 
 

C2-C3-C4 119.232 119.535 

C1-C2 1.3775 1.3734 
 

C2-C3-C6 122.075 122.126 

C2-C3 1.3917 1.3934 
 

C4-C3-C6 118.693 118.339 

C3-C4 1.3891 1.3936 
 

C3-C4-C5 119.837 119.394 

C3-C6 1.4676 1.4574 
 

N1-C5-C4 119.644 119.533 

C4-C5 1.3628 1.3716 
 

N2-C6-N5 108.640 108.921 

 
RMSD 0.01610 

 
N2-C6-C3 127.156 126.387 

    
N5-C6-C3 124.173 124.691 

    
C2-C3-C6-N2 -3.690 -1.824 

    
C2-C3-C6-N5 174.016 177.707 

    
C4-C3-C6-N2 176.276 177.801 

    
C4-C3-C6-N5 -6.018 -2.669 

     
RMSD 1.3247 
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Table 4.2  Interatomic bond lengths (Å), angles (°), and RMSD values for 4PT·HBr. See 

Figure 4.3 for atomic labels. Experimental parameters are from 90 K 

crystallographic data. 

 

Bond, Å Experimental 4PT·HBr 
 

Angle, ° Experimental 4PT·HBr 

Br-N1 3.2108 3.2953 
 

N1-Br-N2 86.907 85.708 

Br-N2 3.1906 3.1908 
 

C1-N1-C5 122.219 122.809 

N1-C1 1.3438 1.3427 
 

N3-N2-C6 109.349 108.837 

N1-C5 1.3500 1.3449 
 

N2-N3-N4 105.897 106.052 

N2-N3 1.3321 1.3579 
 

N3-N4-N5 110.980 110.247 

N2-C6 1.3409 1.3408 
 

N4-N5-C6 105.781 106.082 

N3-N4 1.3099 1.3176 
 

N1-C1-C2 120.064 119.873 

N4-N5 1.3502 1.3713 
 

C1-C2-C3 119.222 118.905 

N5-C6 1.3271 1.3257 
 

C2-C3-C4 119.325 119.595 

C1-C2 1.3764 1.3733 
 

C2-C3-C6 122.507 122.077 

C2-C3 1.3899 1.3931 
 

C4-C3-C6 118.157 118.327 

C3-C4 1.3998 1.3941 
 

C3-C4-C5 119.396 119.436 

C3-C6 1.4583 1.4582 
 

N1-C5-C4 119.765 119.362 

C4-C5 1.3708 1.3712 
 

N2-C6-N5 107.992 108.778 

 
RMSD 0.02448 

 
N2-C6-C3 126.463 126.353 

    
N5-C6-C3 125.520 124.866 

    
C2-C3-C6-N2 -5.229 -2.448 

    
C2-C3-C6-N5 172.710 176.785 

    
C4-C3-C6-N2 175.979 177.848 

    
C4-C3-C6-N5 -6.082 -2.919 

     
RMSD 1.4523 
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Figure 4.3  Calculated bond-length differences for 4-(1H-Tetrazol-5-yl)pyridinium chloride 

(4-PT·HCl) and 4-(1H-Tetrazol-5-yl)pyridinium bromide (4-PT·HBr). The inset 

figure shows the atom labeling for 4-(1H-Tetrazol-5-yl)pyridinium chloride       

(4-PT·HCl) and 4-(1H-Tetrazol-5-yl)pyridinium bromide (4-PT·HBr). 
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Figure 4.4 Ball and stick representation of 4-(1H-Tetrazol-5-yl)pyridinium chloride            

(4-PT·HCl) and 4-(1H-Tetrazol-5-yl)pyridinium bromide (4-PT·HBr) in the ab 

plane displaying the hydrogen bonded 4-(1H-Tetrazol-5-yl)pyridinium chains. 

(Bromine/Chlorine is shown in purple, carbon is shown in black, nitrogen is 

shown in light blue, hydrogen is shown in pink, and hydrogen bonding shown 

with red dashed lines)  
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for ideal hydrogen bonding angles distorts the location of the halogen ion. 

The angles were also modeled with a fair degree of accuracy, as shown by the low 

RMSDs. The calculated RMSDs for the 4PT·HCl and 4PT·HBr complexes were 1.3247 and 

1.1577 respectively. It is important to note that in these systems, the tetrazolate ring is canted by 

~6°, which is significant, because it shows that the pyridyl ring and the tetrazolate ring can move 

independently. Therefore, they are not locked in a planar conformation by delocalization of the π 

bonds over the entire molecule.  

4.3.3     Comparison of Theoretical and Experimental Vibrational Frequencies  

The experimental and calculated terahertz spectra are shown in Figure 4.5 and Figure 

4.6 and are summarized in Table 4.3 and Table 4.4. Empirical analysis of the vibrational modes 

observed using J-ICE44 are shown in Table 4.5. Where there is a combination of intramolecular 

and intermolecular motions, only the major motion is listed.  

Overall, the fits of the theoretically determined terahertz spectra match well to the 

experimentally determined spectra. In addition to the fit, the intensities of the theoretically 

determined spectra are reasonably similar as seen in 4PT·HCl or slightly over estimated as with 

the 4PT·HBr.  

 The 4PT·HCl spectra at 78K and 298K both display five peaks. It can be assumed that at 

the higher temperature the peak at 68.59 cm-1 in the low temperature spectrum is within the 

bandwidth of the high temperature peak at 74.54 cm-1. It is also reasonable to assume that the 

peak at 98.07 cm-1 in the high temperature spectrum corresponds to a peak that is outside the 

collection range. The theoretically determined frequencies show an agreeable correlation with 

the experimentally determined spectrum determined at 78K producing an RMSD of 8.518. It was  
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Figure 4.5 The experimental and theoretical traces for the terahertz spectra of 4-(1H-

Tetrazol-5-yl)pyridinium chloride (4-PT·HCl). An empirical 3.0 cm-1 full-width-

half-maximum Lorentzian line shape has been applied to the theoretical data to 

aid in comparison.  
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Figure 4.6 The experimental and theoretical traces for the terahertz spectra of 4-(1H-

Tetrazol-5-yl)pyridinium bromide (4-PT·HBr). An empirical 3.0 cm-1 full-width-

half-maximum Lorentzian line shape has been applied to the theoretical data to 

aid in comparison.  
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Table 4.3 Frequency positions (cm-1) and RMSD for the experimental and theoretical 

terahertz spectra of 4PT·HCl. The blanks are peaks that have no obvious 

correlation between the room temperature and cryogenic experimental spectra. 

When multiple peaks corresponded to only one peak in the experimental spectra, 

the weighted average was used in calculating the RMSD. Mode descriptions are 

described in Table 4.5.  

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity (ε) 

a 42.89 40.65 52.71 0.07 
b 59.46 56.21 66.53 0.79 
c 68.59 --- 71.98 0.03 
d 

77.89 74.54 
85.60 12.15 

e 86.29 2.14 
f 

93.27 86.72 
91.14 0.81 

g 105.49 50.63 
h --- 98.07 111.42 8.75 

  RMSD 8.518 
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Table 4.4  Frequency positions (cm-1) and RMSD for the experimental and theoretical 

terahertz spectra of 4PT·HBr. When multiple peaks corresponded to only one 

peak in the experimental spectra, the weighted average was used in calculating the 

RMSD. Mode descriptions are described in Table 4.5.  

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity (ε) 

a 38.31 36.51 35.91 2.03 
b 56.18 53.22 51.07 0.42 
c 61.70 57.54 61.62 0.14 
d 

70.03 65.59 
70.43 24.32 

e 72.54 1.28 
f 84.70 

80.15 
87.46 1.55 

g 87.86 92.39 59.97 
h 93.65 

90.85 

99.75 27.47 

i 
95.40 

101.54 17.83 

j 101.63 19.33 

  RMSD 4.120 
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Table 4.5 Empirical normal mode analysis of the halide salts of 5-(4-pyridyl)tetrazole.  

 

Mode Description 
a Translation along b 
b Molecular rotation along ac plane 
c Translation along a 
d Internal torsion along H-X-H (X= Cl,Br) 
e Molecular rotation along ab plane 
f Bending between pyridyl and tetrazole ring 
g Molecular rotation along b 
h Translation along c 
i Molecular rotation along bc plane 
j Molecular rotation along ac plane 
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found that two peaks in the experimental spectra were comprised of two peaks in the 

theoretically determined spectrum. These included the experimentally observed peak at 77.89 

cm-1 being a combination of the peaks found at 85.60 cm-1 and 86.29 cm-1 where the former was 

the major component. It was also determined that the peak at 93.27 cm-1 was comprised of the 

peaks at 91.14 cm-1 and 105.49 cm-1 where the latter was the major component. It is interesting to 

note that the position of the peaks in the theoretical spectra overestimate the experimental 

positions by approximately 10%. If the frequency positions are scaled to 90% of the original 

values, then the RMSD reduces from 8.518 to 2.761, which is a significant improvement in the 

model of the terahertz spectrum. (Frequency positions and the visualizations are available as 

supplementary material in Table B-1 and Figure B-2, respectively.) 

The 4PT·HBr spectrum at 78K shows eight peaks, while the spectrum at 293K shows 

seven. The difference in the number of peaks primarily comes from the better resolution of the 

peaks at cryogenic temperatures; furthermore, it is safe to assume that the peak at 96.19 cm-1 in 

the high temperature spectrum corresponds to a peak in the cryogenic spectrum that is outside 

the collection range. The theoretically determined frequencies show an excellent correlation with 

the experimentally determined spectrum at 78K producing an RMSD of 4.120. It was found that 

two peaks in the experimental spectra were comprised of two peaks in the theoretically 

determined spectrum. These included the experimental peak at 70.03 cm-1 being a combination 

of the peaks found at 70.43 cm-1 and 72.54 cm-1 where the former was the major component. It 

was also determined that the peak at 95.40 cm-1 was comprised of the peaks at 101.54 cm-1 and 

101.63 cm-1 where the latter was the major component. Unlike the 4PT·HCl spectra there is no 

universal shift in the positions of the theoretically derived frequency positions; however, the 

intensities are much larger than those determined experimentally.  
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The empirical visualization of the modes showed that changing the ion resulted in no 

significant changes in the mode descriptions only changes in the mode locations, consistent with 

a mass effect of increasing the mass, decreasing the vibration energy. This is apparent especially 

in the lower energy vibrations, such as the mode identified primarily as a translation along b, and 

more interestingly in the assigned internal torsion along the H-X-H, which is assigned to the 

peak at 77.89 cm-1 and 70.03 for the 4PT·HCl and 4PT·HBr models, respectively. 

Approximating the difference in the vibrational frequencies using eq. 4.1 (f = force 

constant of bond, µ = reduced mass), derived from Hooke’s Law, shows that the difference in the 

vibrational frequency between these modes is related purely by the force constant and the 

reduced mass, illustrated in eq. 4.2.  

�̅ = �
��S �T

�          (eq. 4.1) 

UVWXYZ
UVWX[\ = �TWXYZ

�WXYZ
∗ �WX[\

TWX[\       (eq. 4.2) 

The approximated value for this vibrational difference is 1.175, while the difference for 

the corresponding experimental positions was found to be 1.112. This ~1.4% difference is 

attributed to the actual frequency being not purely attributed to the internal torsion along the H-

X-H, and that furthermore, the approximated value does not take into effect any environmental 

influences. However, this close approximation helps to identify the major attributing factor for 

the shifting to lower frequencies in the 4PT·HBr model, as primarily due to the increased mass 

of the bromide compared to the chloride anion.  
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4.4     Conclusions 

 The solid-state simulation of the geometric and vibrational properties of the halide salts 

of 5-(4-pyridyl)tetrazole was performed to determine the effect of the anionic substitution on the 

low energy terahertz vibrations. CRYSTAL09 was used with great effect in the reproduction of 

the structure and vibrational frequencies of 4-(1H-Tetrazol-5-yl)pyridinium chloride and 4-(1H-

Tetrazol-5-yl)pyridinium bromide allowing a clear assignment of the molecular motions 

associated with these vibrations. 

By comparing the two systems, we have shown that compounds which have nearly 

identical near-IR vibrations spectra have a more drastic differences in the THz region. The 

internal torsion was used as a comparison model due to the major motion involving primarily a 

halogen-hydrogen interaction. This vibrational difference in this mode showed that mass 

substitution has a similar effect in the terahertz region as it does in the near-infrared, in that there 

is red-shift in the frequency position.  

4.5     Supporting Information 

The supporting information consists of a near-infrared vibration spectral overlay of        

4-PT·HCl and 4-PT·HBr shown from 4000-400 cm-1 (Figure B-1). In addition, Frequency 

positions (cm-1) and RMSD for the experimental and scaled theoretical terahertz spectra of 

4PT·HCl where the frequency positions have been reduced to be 90% of the original value is 

provided (Table B-1) and visualized (Figure B-2). The supporting information also contains an 

ORTEP view of the asymmetric unit of α-4PT and β-4PT, showing the partial atom-labeling 

schemes and 50% thermal ellipsoids, Figure B-3 and Figure B-4. 
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Additional material available from the Cambridge Crystallographic Data Centre, CCDC 

No. CCDC 945536-945537, comprises the final atomic coordinates for all atoms, thermal 

parameters, and a complete listing of bond distances and angles. Copies of this information may 

be obtained free of charge on application to The Director, 12 Union Road, Cambridge, CB2 2EZ, 

UK, fax: +44 1223 336 033, e-mail: data_request@ccdc.cam.ac.uk or 

http://www.ccdc.cam.ac.uk.  
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Chapter 5 

 

A Solid-State Density Functional Theory Investigation of the Effect 

of Metal Substitution (Metal = Mn, Cd, Co) on the Terahertz 

Spectra of Isomorphous Molecular Metal 5-(4-pyridyl)tetrazolato 

Complexes 

 

 

The material contained within this chapter is published in Journal of Molecular Structure 

(Pellizzeri, S.; Witko, E. M.; Korter, T.M.; Zubieta, J. J. Mol. Struct. 2013, 1048, 214-222). This 

article has been reproduced with permission from Elsevier. 
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5.1     Introduction 

Tetrazole as a functional group has found many uses in fields as diverse as coordination 

chemistry, where it is used as a ligand due to its multiple binding modes to metal centers,1 

medical chemistry, where it finds a role as a surrogate for a carboxylic acid group,2 and material 

science as a special explosive.3,4 Tetrazoles can easily be substituted to increase its ability to 

coordinate to multiple metal centers so as to form more complex material. One such derivative is 

5-(4-pyridyl)tetrazole, which has found extensive use as a templating ligand in building multi-

dimensional metal–organic frameworks.5 It has been previously shown that this ligand can bind 

through the pyridyl group to form many isostructural compounds with various transition metals 

of the form [M(C6H4N5)2(H2O)4]·2H2O (M = Mn,Cd, Co, Zn, Cu).6–9 The title compounds (M = 

Mn, Cd, Co) are isomorphous with the same space group and almost identical unit cells, 

illustrated in Figure 5.1 (Mn-4PT, Cd-4PT) and Figure 5.2 (Co-4PT).  

The only significant difference between these three molecular complexes is the central 

metal atom. This difference should give rise to interesting vibrational information related to the 

effects of the metal atom. However, due to extensive similarities in structure, the near-IR spectra 

are almost identical with only minor variation.6 Therefore, to determine the effects of metal 

center substitution we were motivated to examine the lower energy vibrational bands that can be 

observed using terahertz (THz) spectroscopy. 

Terahertz spectroscopy has been previously used to investigate molecular crystals to 

study the terahertz absorption caused by the lattice vibrations unique to three-dimensional 

ordered solids.10–12 Unlike near-IR vibrational spectroscopy, there are no characteristic group 

frequencies in the THz region; therefore, the task to determine what vibrations lead to these 

absorptions has fallen on computational approaches.13–15 Since these molecular clusters are  
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Figure 5.1  Ball and Stick representation of the packing structure and single molecular unit of 

[M(C6H4N5)2(H2O)4]·2H2O (M = Mn, Cd). (manganese/cadmium is shown in 

purple, carbon is shown in black, nitrogen is show in light blue and oxygen is 

shown in red)  
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Figure 5.2  Ball and Stick representation of the packing structure and single molecular unit of 

[Co(C6H4N5)2(H2O)4]·2H2O (Co-4PT). (cobalt is shown in dark blue, carbon is 

shown in black, nitrogen is show in light blue and oxygen is shown in red)  
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stabilized through strong hydrogen bonding contacts between the coordinated water on the 

transition metal and the water of crystallization, and additionally from the coordinated water to 

the tetrazolate ring on adjacent clusters, the vibrational modes are influenced by these 

interactions across unit cells. Therefore, in order to accurately predict these vibrational modes, 

the computational approach implemented must be able to reproduce the intermolecular forces 

that are unique to these ordered substances. An approach that has been shown to produce quality 

simulations of THz spectra is solid-state density functional theory (DFT). 

The solid-state DFT approach that was used in this study is implemented in 

CRYSTAL09. The CRYSTAL program has been previously used to simulate many inorganic 

systems to determine their structural, electronic, magnetic and vibrational properties,16–19 as well 

as the vibrational spectra of organic systems.20–22 CRYSTAL09 utilizes periodic boundary 

conditions, which are required to accurately simulate vibrational motions that are perturbed by 

crystal packing forces, and perhaps equally important, to couple external lattice motions to the 

internal ‘‘molecular’’ motions of the asymmetric repeat unit. In this study, CRYSTAL09 was 

used to replicate the geometric parameters of the metal 5-(4-pyridyl)tetrazolato complexes as 

well as to determine the vibrationally active modes in the THz region and to evaluate the normal 

modes that are the result of these absorptions. Any differences that are observed in the terahertz 

spectra can be almost directly related to the metal center and rather than to symmetry or packing 

differences. 
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5.2     Experimental and theoretical methods 

5.2.1     Experimental 

5.2.1.1     Synthesis of Metal 5-(4-pyridyl)tetrazolato Complexes 

Manganese(II) sulfate tetrahydrate (98%, Aldrich), cobalt(II) chloride hexahydrate (98%, 

Aldrich), cadmium(II) nitrate tetrahydrate (98%, Aldrich), 4-pyridinenitrile (98% Aldrich), 

sodium azide (99%, Alfa Aesar), and methanol (99.8%, Aldrich) were purchased from their 

respective vendors and used without further purification. 5-(4-Pyridyl)tetrazole was prepared 

using previously published methods.23 Water was distilled above 3.0 MΩ in-house using a 

Barnstead Model 525 Biopure Distilled Water Center.  

All metal 5-(4-pyridyl)tetrazolato complexes were synthesized following literature 

procedures6,7 with minor variations. In the synthesis of [Mn(C6H4N5)2(H2O)4]·2H2O (Mn-4PT) 

the Mn(NO3)2·4H2O was replaced with Mn(SO4)·4H2O. The [Co(C6H4N5)2(H2O)4]·2H2O (Co-

4PT) procedure was performed with no modification to the literature synthesis. Lastly, in the 

[Cd(C6H4N5)2(H2O)4]·2H2O (Cd-4PT) preparation, the Cd(SO4)·8H2O was replaced with 

Cd(NO3)2·4H2O. All metal 5-(4-pyridyl)tetrazolato complexes were confirmed using single-

crystal X-ray diffraction. 

  5.2.1.2     X-ray Crystallography 

Crystallographic data for all compounds was collected on a Bruker KAPPA APEX DUO 

diffractometer using Mo Ka radiation (k = 0.71073 Å) containing a APEX II CCD system.24 All 

data collections were taken at low temperature (90 K). The data were corrected for Lorentz and 

polarization25 effects, and adsorption corrections were made using SADABS.26 Structures were 
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solved by direct methods. Refinements for each structure were carried out using the SHELXTL27 

crystallographic software. Following assignment of all non-hydrogen atoms, the models were 

refined against F2 first using isotropic and then using anisotropic thermal displacement 

parameters. The hydrogen atoms were introduced in calculated positions and then refined 

isotropically. Neutral atom scattering coefficients along with anomalous dispersion corrections 

were taken from the International Tables, Vol. C. 

5.2.1.3     Time-domain Terahertz Spectroscopy  

The experimental terahertz spectra of the compounds were acquired using a pulsed time-

domain THz spectrometer based on an amplified femtosecond Ti:Sapphire laser system 

operating in the near-infrared region. For the generation and detection of THz radiation, the 

instrument utilized optical rectification28,29 and free space electro-optic sampling,28,30 

respectively. A detailed description of the spectrometer along with the experimental setup has 

been provided elsewhere.21,31,32  

The metal 5-(4-pyridyl)tetrazolato complexes were used without further purification and 

were mixed with a spectroscopic grade powdered polytetrafluoroethylene (PTFE) matrix. 

Polytetrafluoro ethylene is mostly transparent in the THz region, and its usage in dilution of the 

metal 5-(4-pyridyl)tetrazolato samples ensures that the concentration of the sample pellet is 

within the optimal absorption range. The sample and the matrix were then mechanically 

pulverized using a stainless-steel ball mill (Dentsply Rinn 172 3110-3A), the length of the 

pulverization being dependent on the hardness of the sample. This allowed for a homogeneous 

distribution of the sample through the matrix, reduced the particle size, and thus minimized 

radiation scattering.33,34 The mixture was then pressed into a pellet at 2000 psi using a hydraulic 

press (ICL E-Z Press 12). The resulting sample pellet had a total mass of approximately 0.55 g, 
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thickness of ~2.0 mm, diameter of 13.0 mm. The final sample pellets contained 1.62% w/w Cd-

4PT, 1.35% w/w Co-4PT, and 0.74% w/w Mn-4PT. The blank (reference) pellet was prepared 

with pure PTFE in a similar manner.  

The sample and blank pellets were both held under vacuum in a variable-temperature 

cryostat and held at temperatures of 293 K (room temperature) and 78 K (liquid-nitrogen 

temperature). Each individual spectrum of the sample (or the blank pellet) consisted of an 

average of 36 THz-waveform scans over a time window of ~30 ps. These waveforms were then 

symmetrically zero-padded to a total of 6000 data points, and subsequently were Fourier-

transformed (utilizing a Hanning window function) into the frequency-domain. Elimination of 

any THz absorption by the PTFE matrix was accomplished by taking a ratio of the transformed 

spectrum of a PTFE blank versus the transformed spectrum of a sample pellet. To improve the 

final signal-to-noise ratio, four blank/sample sets were collected and averaged, yielding the THz 

spectra ultimately reported here in. The THz absorption spectra cover a range of 10–100 cm-1 

with a spectral resolution of approximately 1.0 cm-1. 

5.2.2     Theoretical methodology of CRYSTAL09 

Geometry optimizations, harmonic frequencies, and intensity calculations were 

performed using the CRYSTAL09 program.35,36 Due to the different possible spin states for 

manganese and cobalt, all the calculations were performed using an unrestricted spin B3LYP37 

hybrid density functional. This functional was also used for the cadmium complex which has no 

unpaired spins. The basis set chosen for manganese, cobalt, and cadmium were Mn_86-

411d41G,38 Co_86-411d41G,39 and the Cd_dou40 basis set, respectively. The Pople basis set 6-

31G(d,p)41 adapted from the 6-31G(d,p) basis set obtained from the EMSL Basis Set 

Exchange,42,43 was used for the remaining atoms. 
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The positions of the atoms contained within the unit cell were optimized within the 

constraints of the lattice parameters and space group symmetry. From the optimized structures, 

the bond lengths and bond angles were determined and compared with the experimental 

crystallographic results. After optimizing the structures, harmonic-limit normal-mode analyses 

on the organometallic complexes were conducted. Frequencies were determined by a mass-

weighted numerical evaluation of the Hessian matrix44 and intensities were calculated through 

the Berry phase approach.36 

Several of the convergence parameters were changed to optimize the accuracy and 

computational time of the calculations. The convergence criteria were modified to set the root 

mean square of the maximum gradient (TOLDEG) and the maximum displacement (TOLDEX) 

to be 0.00001 and 0.00004 Å, respectively. To improve the numerical accuracy of the 

calculations the truncation criteria for bielectronic integrals (TOLINTEG) was set to 8 8 8 8 16 

and the DFT integration was set to XLGRID (75,974). (See Refs.[35,36] for details). Total 

energy convergence (TOLDEE) was set to DE < 1 x 10-8 Hartree for the geometry optimizations 

and DE < 1 x 10-11 Hartree for frequency analyses. To induce the calculations to converge in a 

timely fashion, a modified Broyden45 scheme, following the method proposed by Johnson,46 was 

applied. The parameters used by Albaese and co-workers47 were applied. As a result, after 10 

SCF iterations for each complex, with 90% of Fock/KS matrices simple mixing, the Fock/KS 

matrices simple mixing was reduced to 50%. The optimum sampling of reciprocal space was 

determined by comparing the total energy of the converged system to the k-point count using the 

keyword SHRINK. The optimum SHRINK values for the metal 5-(4-pyridyl)tetrazolato 

complexes were determined to be SHRINK = 6 6 which corresponds to 112 points in the 

irreducible part of the Brillouin Zone and 112 points in the Gilat Net. 
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5.3     Results and discussion 

5.3.1     X-ray Crystallography 

In order to accurately compare the experimentally collected data to the theoretical data, it 

is necessary to use unit cell parameters and atomic positions from a crystal structure that has 

been determined near the same temperature at which the THz spectroscopy has been performed. 

The previously published crystal structures for Mn-4PT and Cd-4PT were determined at 90 K; 

however, the crystal structure for Co-4PT was determined at 294 K. Therefore, it was necessary 

to collect a crystal structure of Co-4PT at 90 K, to be able to more accurately represent the THz 

spectrum collected at 78 K. The structure was found to be isostructural with the published room 

temperature crystal; however, the unit cell parameters are contracted slightly as expected. Co-

4PT crystallized in the P-1 space group with unit cell dimensions of a = 7.112(2) Å, b = 7.767(2) 

Å, c = 8.659(3) Å, α = 91.685(6)°, β = 90.069(5)◦, and γ = 100.743(5)°.  

5.3.2     Comparison of the calculated and experimental structures 

The calculated and experimental bond lengths, bond angles, and the root-mean-squared 

deviation (RMSD) values are shown in Tables 5.1–5.3 (see Figure 5.3 for the labeling scheme) 

for each of the metal 5-(4-pyridyl)tetrazolato complexes, and the results are visualized in Figure. 

5.4. The calculated bond lengths were very well modeled with RMSDs of 8.76 x 10-3,             

11.14 x 10-3 and 23.07 x 10-3 for the Mn-4PT, Co-4PT, and Cd-4PT complexes, respectively. 

The manganese and cobalt structures were modeled with a higher level of precision than the 

cadmium, which produced an RMSD twice that obtained for the smaller transition metals. The 

major deviations were found to be for the cadmium–nitrogen and cadmium–oxygen bond lengths  
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Table 5.1  Interatomic bond lengths (Å), angles (°), and RMSD values for Mn-4PT. See 

Figure 5.3 for atomic labels. Experimental parameters are from Ref. [6]. 

 

Bond, Å Experimental Theoretical 
 

Angle,   ̊ Experimental Theoretical 

Mn1-N1 2.3013 2.2844 
 

O3-Mn1-O3' 180.000 180.000 

Mn1-O2 2.1643 2.1593 
 

O3-Mn1-O2 91.017 91.492 

Mn1-O3 2.1627 2.1768 
 

O3-Mn1-O2' 88.983 88.508 

C1-N1 1.3470 1.3460 
 

O2-Mn1-O2' 180.000 180.000 

C1-C2 1.3748 1.3870 
 

O3-Mn1-N1 88.877 88.844 

C2-C3 1.3896 1.4004 
 

O3-Mn1-N1' 91.123 91.156 

C3-C4 1.3906 1.3989 
 

O2-Mn1-N1 92.672 92.289 

C3-C6 1.4630 1.4650 
 

O2-Mn1-N1' 87.328 87.711 

C4-C5 1.3825 1.3890 
 

N1-Mn1-N1' 180.000 180.000 

C5-N1 1.3368 1.3446 
 

C1-N1-C5 116.545 117.236 

C6-N2 1.3368 1.3423 
 

C1-N1-Mn1 120.112 119.762 

C6-N5 1.3424 1.3445 
 

C5-N1-Mn1 123.284 122.882 

N2-N3 1.3390 1.3315 
 

N1-C1-C2 123.514 123.361 

N3-N4 1.3198 1.3169 
 

C1-C2-C3 119.589 119.248 

N4-N5 1.3443 1.3341 
 

C2-C3-C4 117.366 117.545 

 RMSD 0.00876 
 

C2-C3-C6 121.233 120.602 

   
 

C4-C3-C6 121.395 121.844 

   
 

C3-C4-C5 119.199 119.197 

    
N1-C5-C4 123.774 123.391 

    
N2-C6-N5 111.306 110.509 

    
N2-C6-C3 124.502 124.820 

    
N5-C6-C3 124.162 124.649 

    
C6-N2-N3 104.975 105.090 

    
N2-N3-N4 109.690 109.908 

    
N3-N4-N5 109.157 109.140 

    
C6-N5-N4 104.870 105.352 

    
C2-C3-C6-N2 165.940 166.158 

    
C2-C3-C6-N5 -11.926 -11.954 

   
 

C4-C3-C6-N2 -13.147 -12.725 

   
 

C4-C3-C6-N5 168.987 169.163 

   
  

RMSD 0.3629 
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Table 5.2  Interatomic bond lengths (Å), angles (°), and RMSD values for Co-4PT. See 

Figure 5.3 for atomic labels. Experimental parameters are from 90K 

crystallographic data. 

 

Bond, Å Experimental Theoretical 
 

Angle,   ̊ Experimental Theoretical 

Co1-N1 2.1367 2.1314 
 

O2-Co1-O2' 180.000 180.000 

Co1-O2 2.0737 2.1060 
 

O2-Co1-O3 90.045 90.642 

Co1-O3 2.1141 2.1120 
 

O2-Co1-O3' 89.955 89.358 

C1-N1 1.3399 1.3448 
 

O3-Co1-O3' 180.000 180.000 

C1-C2 1.3764 1.3876 
 

O2-Co1-N1 90.132 90.377 

C2-C3 1.3915 1.4003 
 

O2-Co1-N1' 89.868 89.663 

C3-C4 1.3921 1.3996 
 

O3-Co1-N1 87.151 87.159 

C3-C6 1.4686 1.4664 
 

O3-Co1-N1' 92.849 92.841 

C4-C5 1.3717 1.3865 
 

N1-Co1-N1' 180.000 180.000 

C5-N1 1.3435 1.3444 
 

C1-N1-C5 116.684 117.322 

C6-N2 1.3398 1.3452 
 

C1-N1-Co1 122.040 121.594 

C6-N5 1.3407 1.3430 
 

C5-N1-Co1 120.796 120.533 

N2-N3 1.3413 1.3349 
 

N1-C1-C2 123.729 123.300 

N3-N4 1.3144 1.3155 
 

C1-C2-C3 119.200 119.254 

N4-N5 1.3454 1.3312 
 

C2-C3-C4 117.294 117.436 

 
RMSD 0.01114 

 
C2-C3-C6 122.207 121.981 

    
C4-C3-C6 120.493 120.582 

    
C3-C4-C5 119.590 119.315 

    
N1-C5-C4 123.446 123.319 

    
N2-C6-N5 111.620 110.441 

    
N2-C6-C3 125.296 125.950 

    
N5-C6-C3 123.072 123.600 

    
C6-N2-N3 104.868 105.327 

    
N2-N3-N4 109.295 109.173 

    
N3-N4-N5 109.974 109.939 

    
C6-N5-N4 104.241 105.120 

    
C2-C3-C6-N2 -14.188 -14.611 

    
C2-C3-C6-N5 167.132 166.614 

    
C4-C3-C6-N2 164.917 164.968 

    
C4-C3-C6-N5 -13.764 -13.807 

     
RMSD 0.4241 

 



www.manaraa.com

165 
 

 

 

Table 5.3  Interatomic bond lengths (Å), angles (°), and RMSD values for Cd-4PT. See 

Figure 5.3 for atomic labels. Experimental parameters are from Ref. [6]. 

 

Bond, Å Experimental Theoretical 
 

Angle,   ̊ Experimental Theoretical 

Cd1-N1 2.3295 2.3858 
 

O3-Cd1-O3' 180.000 180.000 

Cd1-O2 2.2826 2.3256 
 

O3-Cd1-O2 92.215 96.227 

Cd1-O3 2.2900 2.3348 
 

O3-Cd1-O2' 87.785 83.773 

C1-N1 1.3465 1.3440 
 

O2-Cd1-O2' 180.000 180.000 

C1-C2 1.3755 1.3867 
 

O3-Cd1-N1 89.226 89.296 

C2-C3 1.3939 1.4014 
 

O3-Cd1-N1' 90.774 90.704 

C3-C4 1.3829 1.3989 
 

O2-Cd1-N1 93.222 93.409 

C3-C6 1.4658 1.4641 
 

O2-Cd1-N1' 86.778 86.591 

C4-C5 1.3744 1.3880 
 

N1-Cd1-N1' 180.000 180.000 

C5-N1 1.3452 1.3417 
 

C1-N1-C5 116.648 118.208 

C6-N2 1.3418 1.3421 
 

C1-N1-Cd1 120.575 120.176 

C6-N5 1.3329 1.3440 
 

C5-N1-Cd1 122.692 121.466 

N2-N3 1.3365 1.3308 
 

N1-C1-C2 123.290 122.856 

N3-N4 1.3186 1.3168 
 

C1-C2-C3 119.444 119.035 

N4-N5 1.3455 1.3330 
 

C2-C3-C4 117.506 117.931 

 
RMSD 0.02307 

 
C2-C3-C6 120.809 120.610 

    

C4-C3-C6 121.677 121.452 

    

C3-C4-C5 119.571 119.101 

    

N1-C5-C4 123.527 122.845 

    

N2-C6-N5 111.597 110.516 

    

N2-C6-C3 123.971 124.742 

    

N5-C6-C3 124.407 124.725 

    

C6-N2-N3 104.484 105.064 

    

N2-N3-N4 110.041 109.913 

    

N3-N4-N5 108.884 109.146 

    

C6-N5-N4 104.992 105.360 

    

C2-C3-C6-N2 166.216 166.332 

    

C2-C3-C6-N5 -11.830 -12.020 

    

C4-C3-C6-N2 -12.739 -12.654 

    

C4-C3-C6-N5 169.214 168.994 

    
 

RMSD 1.1577 
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Figure 5.3  The atom labeling for [M(C6H4N5)2(H2O)4]·2H2O (M = Mn, Co, Cd ). 
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Figure 5.4  Calculated bond-length differences for Mn-4PT, Co-4PT, and Cd-4PT. 
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which were overestimated by on average ~0.05 Å. However this difference should have no major 

consequences on the simulation of the frequency modes. 

The angles were also modeled with a fair degree of accuracy, as shown by the low 

RMSDs. The calculated RMSDs for the Mn-4PT, Co-4PT, and Cd-4PT complexes were 0.3629, 

0.4241 and 1.1577 respectively. The manganese and cobalt structures once again provided 

RMSD values of about half that found for the cadmium simulation. It is important to note that 

four torsion angles are included, because in these systems the tetrazolate ring is canted by ~13°, 

which occurs when the pyridyl nitrogen donor is bound to the metal. This is not observed to the 

same extent (~2°) in the free ligand, as shown in the previously published crystal structure.48 The 

solid state DFT method used was able to accurately model this torsion angle, which is 

significant, because it shows that the pyridyl ring and the tetrazolate ring can move 

independently. Therefore, they are not locked in a planar conformation by delocalization of the 

pi bonds over the entire molecule.  

Due to the different possible spin state arrangement of the d electrons of the 

manganese(II), which is d5, and cobalt(II), which is d7, an unrestricted spin calculation was 

employed. This was necessary because complexes could be in either a high or low spin 

arrangement, which would drastically change the metal bond distances. As expected from the 

nature of the coordination spheres of the metals, both Mn-4PT and Co-4PT converged in a high 

spin state, and the strong correlation between the crystallographic and theoretical bond distances 

of the metal–nitrogen bonds confirms the high spin assignment. 
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5.3.3     Comparison of theoretical and experimental vibrational frequencies 

The experimental and calculated terahertz spectra are shown in Figure 5.5 and 

summarized in Table 5.4 for each metal 5-(4-pyridyl)tetrazolato complex. Empirical analyses of 

the major vibrational modes observed using J-ICE49 are summarized in Table 5.5. Overall, the 

modeling of the terahertz spectra show a fair degree of accuracy, exhibiting a similar number of 

peaks as well as a majority of the intensities with the same order of magnitude, excluding the 

cobalt complex. Based on the RMSD values, given in Table 5.4, the simulation for Cd-4PT is 

better than that for the Mn-4PT and the Co-4PT complexes. It is interesting to note that the order 

of the RMSD values for the vibrational correlation is not the same as the order for the bond 

length and angle correlations. This discrepancy shows that there is not always a direct correlation 

between the accuracy in the bond lengths and the accuracy of the frequencies. 

The Mn-4PT spectrum at 78 K shows four peaks and the 298 K spectrum shows only 

two. It can be assumed that at the higher temperature the peaks at 83.33 cm-1 and 96.66 cm-1 in 

the low temperature spectrum are within the bandwidth of the high temperature peak at 87.77 

cm-1. The simulated spectrum shows a good correlation with the two major peaks of the 

experimental spectrum but at a slightly higher frequency. However, the two smaller peaks at ca. 

83.17 and 96.49 cm-1 were not found in the calculated spectra. The Co-4PT spectrum at 78 K 

shows three peaks and the 298 K spectrum shows only two. The simulated spectrum can be 

correlated with the major peaks of the experimental spectrum but at a higher frequency. The Cd-

4PT spectra at 78 K and 298 K both show three peaks. The simulated spectrum shows a good 

correlation with all the peaks appearing at slightly higher frequencies than the experimental 

spectrum. It can be assumed that the combination of peaks at 86.60 cm-1 and 91.58 cm-1 in the  
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Figure 5.5 The experimental and theoretical traces for the terahertz spectra of A) Mn-4PT, B) 

Co-4PT, and C) Cd-4PT. An empirical 3.0 cm-1 full-width-half-maximum 

Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. The 99.50 cm-1 peak in the Co-4PT spectra was cut off to aid in 

visualization, the intensity peaks at ~850 M-1 cm-3 
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Table 5.4  Frequency positions (cm-1) and RMSD for the experimental and theoretical 

terahertz spectra of the metal 5-(4-pyridyl)tetrazolato complexes. The blanks are 

peaks that have no obvious correlation between experiment and theory. Visual 

inspection was used to correlate experimental and theoretical vibrational modes. 

Mode descriptions are described in Table 5.5.  

 

Mn-4PT 

Mode Exp. (78K) Exp. (293K) Theory Intensity 

a 71.13 67.65 82.68 45.37 

--- 83.17 --- --- --- 

b 92.15 87.60 96.46 39.25 

--- 96.49 --- --- --- 

  
RMSD 6.161 

 
     Co-4PT 

Mode Exp. (78K) Exp. (293K) Theory Intensity 

--- 61.72 --- --- --- 

a 74.07 72.55 86.33 15.88 

b 95.72 92.59 99.50 176.32 

  
RMSD 6.417 

 
     Cd-4PT 

Mode Exp. (78K) Exp. (293K) Theory Intensity 

a 60.50 56.32 64.74 6.99 

b 73.00 73.92 80.26 21.01 

b+c 
80.56 85.82 

86.60 9.73 

c 91.58 9.67 

  
RMSD 3.735 
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Table 5.5. Empirical normal mode analysis of the metal 5-(4-pyridyl)tetrazolato complexes.  

 

Mode Description 

a Ligand scissoring along the a axis 

b Ligand wagging along the bc plane 

c Pyridyl ring rotation in the ab plane 
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theoretical spectrum comprises the peaks at either 80.56 cm-1 or 85.82 cm-1 in the low or high 

temperature spectra, respectively.  

When comparing the normal modes of the three metal 5-(4-pyridyl)tetrazolato 

complexes, a total of three different types of modes are observed in each case. All three 

complexes share the same two low energy scissoring vibrations (Figure 5.6A) and a wagging of 

the 5-(4-pyridyl)tetrazolato ligands (Figure 5.6B) with respect to each other along different axes. 

The cadmium complex shows a new type of vibration within the measured range corresponding 

to pyridyl ring rotation that does not involve motion of either the metal center or the tetrazolate 

ring (Figure 5.6C). This motion is not found in the measured range (10–100 cm-1) for the 

manganese or cobalt complexes. However they are predicted to be at 112.35 cm-1 and 107.12   

cm-1 for the Mn-4PT and Co-4PT complexes, respectively.  

Two trends are found when comparing the vibrational modes for all three complexes. The 

first trend is illustrated with the location of pyridyl ring rotation, which shows the typical 

response due to increasing the mass of the complex, which causes the vibrations shift to lower 

frequencies. This observation implies that this motion is at a higher frequency for the manganese 

complex and at a much lower frequency for the cadmium complex. The second trend is related to 

the ligand scissoring and wagging motions, where once again there is a significant effect due to 

increasing the mass of the complex, with the consequence that these frequencies are shifted to 

their lowest values in the cadmium complex. However, for the manganese and cobalt complexes, 

this trend is reversed, indicating that the heavier cobalt complex exhibits a higher frequency than 

the lighter manganese complex. This observation suggests that the bond strength of the cobalt–

nitrogen bond is greater than that of the manganese–nitrogen bond, and the experimental bond 

lengths support this inference with the cobalt–nitrogen bond distance being much shorter at  
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Figure 5.6 Visualization of vibrational normal modes A) ligand scissoring along the a axis, 

B) ligand wagging along the bc plane, and C) pyridyl ring rotation in the ab plane. 

Arrows denote the direction of molecular motion. 
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2.1367 Å than that of the manganese–nitrogen bond of 2.3013 Å. Furthermore, the    

metal–nitrogen bond is the significant determinant because there is no major experimentally 

observed deviation in the metal–oxygen bond lengths. 

5.4     Conclusions 

The solid-state simulation of the geometric and vibrational properties of three metal       

5-(4-pyridyl)tetrazolato complexes was performed to determine the effect of the size and mass of 

the metal center on the vibrational frequencies in the low energy THz region. Comparing the 

spectra of these compounds has shown that while the three are isomorphous and are nearly 

identical in the near-IR, there are large differences in the terahertz region. These differences in 

the THz region are likely caused by the different metal centers.  

Solid-state DFT using CRYSTAL09 was found to replicate the complex interactions that 

are occurring in these hybrid metal–organic materials. Due to the possibility of different spin 

states for the manganese(II), which is d5, and cobalt(II), which is d7, an unrestricted spin 

calculation was performed. Both the Mn-4PT and Co-4PT complexes converged in a high spin 

state, and the strong correlation between the crystallographic and theoretical bond distances of 

the metal–nitrogen bond suggests that these complexes are in fact high spin, as expected form the 

nature of the coordination spheres. The ability to correctly assign the spin state led to strong 

correlations for the structures of the manganese and cobalt complexes. However the less accurate 

simulation for the cadmium complex provided the closest correlation with the experimental 

terahertz spectrum. 

Three unique vibrational modes were found, and two trends were discovered when 

comparing these vibrational modes across all three complexes. The first trend is related to the 

frequency of pyridyl ring rotation, which shows the common trend of the vibrations shifting to 
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lower frequencies as the mass of the complex increases. The second trend emerges in comparing 

the ligand scissoring and wagging motions, where once again there is a significant effect of 

increased the mass of the complex resulting in lower frequencies. However, this trend is reversed 

for the manganese and cobalt complexes where the significantly stronger cobalt–nitrogen bond 

outweighs the effect of the increasing mass. Consequently, the effects of the metal center in the 

low energy lattice and molecular motions found in the terahertz region are sensitive to 

differences in not only the mass but also on the bond strength, when the metal plays a role in the 

normal mode. These effects may not be observable in the higher energy regions of the infrared 

spectrum. 

5.5     Supporting Information 

The supporting information consists of an ORTEP view of the asymmetric unit of Co-

4PT, showing the partial atom-labeling schemes and 50% thermal ellipsoids (Figure C-1) 

Additional material available from the Cambridge Crystallographic Data Centre, CCDC 

No. CCDC 924460, comprises the final atomic coordinates for all atoms, thermal parameters, 

and a complete listing of bond distances and angles. Copies of this information may be obtained 

free of charge on application to The Director, 12 Union Road, Cambridge, CB2 2EZ, UK, fax: 

+44 1223336 033, e-mail: data_request@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk. 

Supplementary data associated with this article can be found, in the with this article can be 

found, in the online version, at http://dx.doi.org/10.1016/j.molstruc.2013.05.055. 
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Chapter 6 

 

Crystal Structure and Terahertz Spectroscopy of α,α,α′,α′-

Tetrabromo-p-xylene Modeled using Solid-State Density Functional 

Theory 
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6.1     Introduction 

α,α,α′,α′-Tetrabromo-p-xylene (TBX) has been primarily used in recent years as a starting 

material in the electrochemical synthesis of poly(p-phenylenevinylene) (PPV).1-5 This provides 

an alternative to the traditional synthesis of PPV6,7 which leaves traces of unreacted starting 

material that hinders the properties of the resulting polymer. The electrochemical method of the 

PPV synthesis using TBX does not have this drawback. TBX has also been used more recently 

as a starting material in conjunction with 3,5-dimethylpyrazole to produce complex bitopic 

ligands.8 Despite its uses in chemical applications, the crystal structure of TBX has not yet been 

reported. While the structure might not have any significant effect on its current uses, the 

conformation of the freely rotating -CHBr2 substituent could be quite interesting, in particular 

how this substituent might affect the packing of the molecules in three dimensional space. 

Therefore, we have crystallized TBX, determined its structure and discovered that the nature of 

the packing within the molecular crystal is primarily held through electrostatic interactions, 

shown in Figure 6.1. 

Most molecular crystals exhibit lattice vibrations which are the consequence of 

intermolecular interactions.9 For the majority of molecular crystals these vibrations are found in 

the terahertz (THz) region (3-333cm-1) consisting of intermolecular contributions from 

translations and rotations which involve weaker electrostatic and dispersive forces. To measure 

these vibrational motions, THz spectroscopy was then utilized to measure the absorption caused 

by these lattice vibrations which are unique to three-dimensional solids.10-12 Since the field of 

interpreting the nature of THz vibrations is still relatively young, this system which is not 

affected by strong interactions, such as hydrogen bonding between unit cells, should result in a 

clearer interpretation of the vibrational modes. 
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Figure 6.1  Ball and Stick representation of the molecular packing of α,α,α′,α′-tetrabromo-p-

xylene (TBX). (Bromine is shown in dark red, carbon is shown in black and 

hydrogen is shown in pink)  
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To determine the nature of these vibrations in the THz region the use of  computational 

approaches was necessary due to the absence of characteristic group frequencies, unlike near-IR 

vibrational spectroscopy.13-15 Since this system is held together primarily through electrostatic 

interactions across unit cells, accurate prediction of the vibrational modes requires a 

computational approach that reproduces the intermolecular forces that are unique to this 

substance. An approach that has been shown to produce quality simulations of THz spectra is 

solid-state density functional theory (DFT). 

The solid-state DFT approach that was used in this study is implemented in 

CRYSTAL09, which has been used with great success to simulate many organic systems in 

order to determine their structural and vibrational properties.16-18 CRYSTAL09 utilizes periodic 

boundary conditions, which are required to accurately simulate vibrational motions that are 

perturbed by crystal packing forces, and perhaps equally important, to couple external lattice 

motions to the internal “molecular” motions of the asymmetric repeat unit. Therefore, 

CRYSTAL09 was used to replicate the geometric parameters of TBX as well as to determine the 

vibrationally active modes in the THz region and to evaluate the normal modes that are the result 

of these absorptions.  

6.2     Experimental and Theoretical Methods 

6.2.1     Experimental  

6.2.1.1     Recrystallization of α,α,α′,α′-Tetrabromo-p-xylene. 

α,α,α′,α′-Tetrabromo-p-xylene (98%) was purchased from VWR and recrystallized from 

acetone to yield colorless needles that were suitable for X-Ray diffraction.  IR (KBr pellet, cm-1): 
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3007(w), 2372(w), 2344(w), 1913(w), 1417(s), 1306(w), 1233(m), 1151(m), 1111(m), 1015(w), 

841(m), 780(s), 651(s), 635(s).   

6.2.1.2      X-Ray Crystallography 

Crystallographic data for the compound was collected on a Bruker KAPPA APEX DUO 

diffractometer using Mo-Kα radiation (λ = 0.71073Å) containing an APEX II CCD system19 at 

low temperature (90K).  The data was corrected for Lorentz and polarization20 effects, and 

adsorption corrections were made using SADABS.21 The structure was solved by direct methods.  

Refinement was carried out using the SHELXTL22 crystallographic software.  Following 

assignment of all non-hydrogen atoms, the models were refined against F2 first using isotropic 

and then using anisotropic thermal displacement parameters.  The hydrogen atoms were 

introduced in calculated positions and then refined isotropically.  Neutral atom scattering 

coefficients along with anomalous dispersion corrections were taken from the International 

Tables, Vol. C.   

6.2.2 Time-domain Terahertz Spectroscopy 

The experimental terahertz spectrum of the compound was acquired using a pulsed time-

domain THz spectrometer based on an amplified femtosecond Ti:Sapphire laser system operating 

in the near-infrared region.  For the generation and detection of THz radiation, the instrument 

utilized optical rectification23,24 and free space electro-optic sampling,23,25 respectively.  A 

detailed description of the spectrometer along with the experimental setup has been provided 

elsewhere.17,26,27   

TBX was used without further purification and was mixed with a spectroscopic grade 

powdered polytetrafluoroethylene (PTFE) matrix.  The sample and the matrix were then 



www.manaraa.com

186 
 

mechanically pulverized using a stainless-steel ball mill (Dentsply Rinn 3110-3A), allowing a 

homogeneous distribution of the sample through the matrix, thereby reducing the particle size, 

and minimizing radiation scattering.27,28 The mixture was then pressed into a pellet at 2000 psi 

using a hydraulic press (ICL E-Z Press 12).  The resulting sample pellet had a total mass of 

0.56657 g, thickness of 2.01 mm, diameter of 13.0 mm, containing 13.63% w/w TBX.  The 

blank (reference) pellet was prepared with pure PTFE in a similar manner. 

The sample and blank pellets were both held under vacuum in a variable-temperature 

cryostat and held at temperatures of 293 K (room temperature) and 78 K (liquid-nitrogen 

temperature).   

Each individual spectrum of the sample (or the blank pellet) consisted of an average of 36 

THz-waveform scans over a time window of ~30 ps.  These waveforms were then symmetrically 

zero-padded to a total of 6000 data points, and subsequently were Fourier-transformed (utilizing 

a Hanning window function) into the frequency-domain.  Elimination of any THz absorption by 

the PTFE matrix was accomplished by taking a ratio of the transformed spectrum of a PTFE 

blank versus the transformed spectrum of a sample pellet.  To improve the final signal-to-noise 

ratio, four blank/sample sets were collected and averaged, over a range of 10 to 100 cm-1 with a 

spectral resolution of approximately 1.0 cm-1, yielding the THz spectrum reported here.  

6.2.3     Theoretical Methodology of CRYSTAL09 

Geometry optimizations, harmonic frequencies, and intensity calculations  

were performed using the CRYSTAL09 program.29,30 All calculations were performed using a 

spin restricted B3LYP31 hybrid density functional. The basis set chosen for all the atoms was a 

Gaussian type triple valence basis set with polarization (pob_TZVP).32 
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The positions of the atoms contained within the unit cell were optimized within the 

constraints of the literature lattice parameters and space group symmetry. From the optimized 

structures, the bond lengths and bond angles were determined and compared with the 

experimental crystallographic results. After optimizing the structures, harmonic-limit normal-

mode analyses on the organometallic complexes were conducted. Frequencies were determined 

by a mass-weighted numerical evaluation of the Hessian matrix33 and intensities were calculated 

through the Berry phase approach.30  

Several of the convergence parameters were changed to optimize the accuracy and  

computational time of the calculations. The convergence criteria were modified to set the root 

mean square of the maximum gradient (TOLDEG) and the maximum displacement (TOLDEX) 

to be 1 x 10-5 and 4 x 10-5 angstroms, respectively. To improve the numerical accuracy of the 

calculations the truncation criteria for bielectronic integrals (TOLINTEG) was set to 8 8 8 8 16 

and the DFT integration was set to XLGRID (75,974). (See Ref. [29,30] for details). Total 

energy convergence (TOLDEE) was set to ∆E < 1 x 10-8 Hartree for the geometry optimization 

and ∆E < 1 x 10-11 Hartree for frequency analysis.  

To assist in a timely convergence, the “Fock/KS matrix mixing” (FMIXING) was 

increased from the default value of zero to 50 for all systems. The eigenvalue level shifter was 

also activated with the level shifter set to a value that corresponds to a shift of 0.5 Hartree, and 

the state was locked, confining it to an insulating state. Determination of the optimum sampling 

of reciprocal space was determined by comparing the total energy of the converged system to the 

k-point count using the keyword SHRINK. The optimum SHRINK value was determined to be 

SHRINK = 6 6 which corresponds to 80 points in the irreducible part of the Brillouin Zone and 

80 points in the Gilat Net.  
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6.3     Results and Discussion 

6.3.1     X-Ray Crystallography 

The molecular structure of TBX crystallizes in the monoclinic space group P21/n. 

Crystallographic details for TBX are provided in Table 6.1. Packing of the structure in the bc 

plane displays a zig-zag pattern up the c crystallographic axis as previously shown in Figure 6.1. 

This packing arrangement allows the molecules to be close-packed with one another with the 

shortest interatomic distance between two bromide atoms of two adjacent TBX molecules being 

3.835(8)Å. In addition to the close packing of neighboring molecules, the bromide on a 

neighboring molecule is situated perpendicular to the plane of the benzene ring. This 

arrangement is favorable due to the apparent electron withdrawing effect of the –CHBr2 

substituent on the benzene ring creating a slight positive charge on the carbon atoms of the 

benzene ring, leading to a favorable interaction with the slightly negative bromide atom. A 

graphical representation of the Mulliken population analysis for TBX is provided in Figure 6.2. 

Images of the crystal structures were generated using CrystalMaker®.34 An ORTEP plot of the 

structure is displayed in Figure D-2. 

6.3.2     Comparison of the Calculated and Experimental Structures 

The calculated and experimental bond lengths, bond angles, and the root-mean-squared 

deviation (RMSD) values are shown in Table 6.2 (see Figure 6.3 for the labeling scheme), and 

the results are visualized in Figure 6.3.  The theoretical strategy used was able to model the bond 
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Table 6.1  Summary of crystallographic data for α,α,α′,α′-tetrabromo-p-xylene.  

 

 α,α,α′,α′-Tetrabromo-p-xylene 
Empirical Formula C8 H6 Br4 

Formula Weight 421.77 

Crystal System Monoclinic 

Space Group P21/n 

a (Å) 5.409(3) 

b (Å) 8.193(4) 

c (Å) 12.002(6) 

α (°) 90 

β(°) 98.289(11) 

γ(°) 90 

V(Å3) 526.4(4) 

Z 2 

Dcalc(g cm-3) 2.661 

µ (mm-1) 15.235 

T (K) 90 

Wavelength 0.71073 

R1
a 0.0284 

wR2
b 0.0743 

 
a R1 = Σ|Fo| - |Fc|/Σ|Fo|. 

b wR2 = {Σ[w(Fo
2 - Fc

2)2]/Σ[w(Fo
2)2]}1/2 
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Figure 6.2  Graphical representation of the Mulliken population analysis of α,α,α′,α′-

Tetrabromo-p-xylene. 
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Table 6.2  Interatomic bond lengths (Å), angles (°), and RMSD values for α,α,α′,α′-

tetrabromo-p-xylene. See Figure 6.3 for atomic labels. Experimental parameters 

are from 90 K crystallographic data. 

 

Bond, Å Experimental Theoretical  Angle, ° Experimental Theoretical 

Br1-C1 1.9513 1.9806 
 Br1-C1-C2 111.028 112.701 

Br2-C1 1.9514 1.9799 
 

Br2-C1-C2 110.820 112.464 
C1-C2 1.5191 1.4857 

 
Br1-C1-Br2 109.822 109.730 

C2-C3 1.3803 1.3931 
 

C1-C2-C3 115.020 118.187 
C2-C4 1.3738 1.3898 

 
C1-C2-C4 125.703 122.209 

C3-C4 1.3611 1.3807 
 

C3-C2-C4 119.276 119.598 
C1-H1 0.9994 1.0804 

 
C2-C3-C4 120.531 120.355 

C3-H3 0.9499 1.0811 
 

C2-C4-C3 120.192 120.046 

C4-H4 0.9495 1.0815 
  

RMSD 1.8676 

 
RMSD 0.02446 
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Figure 6.3  Calculated bond-length differences for α,α,α′,α′-tetrabromo-p-xylene (TBX). The 

inset figure shows the atom labeling for TBX. 
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lengths with a very reasonable amount of accuracy, replicating each of the bonds within ±0.035Å 

and producing a RMSD of 0.02446. In addition to the bond lengths, the angles were also 

modeled with a high level of accuracy, producing no large deviations from the experimentally 

derived structure. The packing arrangement remains consistent in the optimized structure with 

the shortest interatomic distance between two bromide atoms of two adjacent TBX molecules 

being 3.891Å, which is only an overestimation of 1.46%. The strong correlation between the 

optimized structure and the experimentally determined structure suggests that the structure is at a 

potential energy minimum, which is necessary for an accurate simulation of the vibrational 

frequencies. 

6.3.3     Comparison of Theoretical and Experimental Vibrational Frequencies  

The experimental and calculated terahertz spectra are shown in Figure 6.4 and are 

summarized in Table 6.3. Empirical analysis of the vibrational modes observed using J-ICE35 

are shown in Table 6.4. Although there is a combination of intramolecular and intermolecular 

motions, only the major motion is listed. Overall, the fit to the theoretically determined terahertz 

spectrum produces a close match to the experimentally determined spectrum. In addition, the 

intensities of the theoretically determined spectrum are reasonably similar to the experimental 

terahertz spectrum. 

The spectrum at 78K displays three peaks. However, the bands at 35.69 cm-1 and 49.10 

cm-1 both show a shoulder, whose frequencies were determined using a Lorentzian multi-peak 

fitting function and are included in Table 6.3, a graphical representation of the fitting is available 

in the supplementary materials (Figure D-3). The 298K spectrum in comparison only displays 

two peaks with no discernible shoulders. This difference in the quantity of the observed peaks 

can be likely attributed to the broadening of the peaks observed in the 78K spectra due to the  
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Figure 6.4  The experimental and theoretical traces for the terahertz spectrum of α,α,α′,α′-

tetrabromo-p-xylene (TBX). An empirical 3.0 cm-1 full-width-half-maximum 

Lorentzian line shape has been applied to the theoretical data to aid in 

comparison.  
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Table 6.3  Frequency positions (cm-1) and RMSDs for the experimental and theoretical 

terahertz spectra of α,α,α′,α′-tetrabromo-p-xylene. The blanks are peaks that have 

no obvious correlation between the room temperature and cryogenic experimental 

spectra. When multiple peaks corresponded to only one peak in the experimental 

spectra, the weighted average was used in calculating the RMSD. Mode 

descriptions are described in Table 6.4.  

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity 

a 35.44 
34.39 

32.11 0.93 
b 

37.28 
38.81 1.3 

c 44.88 0.09 
d 

48.97 
47.01 

46.10 0.1 
e 47.43 0.46 
f 51.52 56.26 0.83 
g 67.52 --- 74.56 0.51 

  RMSD 4.242 
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Table 6.4  Empirical normal mode analysis of the halide salts of α,α,α′,α′-tetrabromo-p-

xylene.  

 

Mode Description 
a Translation along c 
b Translation along b 
c Translation along a 
d Molecular scissoring in the ac plane 
e Molecular scissoring in the bc plane 
f Molecular scissoring in the ab plane 
g Molecular rocking in the ac plane 
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increase in the number of populated vibrational states due to the increase in thermal energy, 

resulting in the decrease of the observable peaks in the 298K spectrum.  

The theoretically determined frequencies show an excellent correlation with the 

experimentally determined spectrum determined at 78K, producing an RMSD of 4.232. It was 

found that two peaks in the experimental spectrum were comprised of two peaks in the 

theoretically determined spectrum. These included the experimental peak at 40.51 cm-1, which is 

a combination of the peaks found at 38.81 cm-1 and 44.88 cm-1, where the former was the major 

component. It was also determined that the peak at 49.10 cm-1 was comprised of the peaks at 

46.10 cm-1 and 47.43 cm-1 where the latter was the major component. 

The empirical visualization of the modes showed that there were three major motion 

types as illustrated in Figure 6.5. The first type (Figure 6.5A) corresponds to the lowest energy 

modes a-c, which involves translations along the primary axes of the unit cell.  The second type 

(Figure 6.5B) corresponds to modes d-f, which involves molecular scissoring in various 

crystallographic planes. Lastly, type C (Figure 6.5C) corresponds to mode g, which involves 

molecular rocking in the ac plane. With the exception of the last mode, the two major features in 

the experimentally determined spectrum located at 35.69cm-1 and 49.10 cm-1 and their 

corresponding shoulders are the combination of all the possible perturbations of either 

translational or scissoring motions available. 

6.4     Conclusions 

The crystal structure of α,α,α′,α′-tetrabromo-p-xylene was determined  using single crystal x-ray 

diffraction. In addition, the solid-state simulation of the geometric and vibrational properties 

were performed using the CRYSTAL code. The crystal structure revealed that α,α,α′,α′-

tetrabromo-p-xylene crystallizes as a molecular crystal and is primarily held together through  
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Figure 6.5 Visualization of vibrational normal modes. Type A corresponds to modes a-c, 

which involve translations along the primary axes. Type B corresponds to modes 

d-f, which involves molecular scissoring in various planes. Type c corresponds to 

mode g, which involves molecular rocking in the ac plane. Arrows denote the 

direction of molecular motion. (Bromine is shown in red, carbon is shown in 

black and hydrogen is shown in grey.) 
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electrostatic forces. Due to the nature of the packing, the complex made a prime candidate for 

characterization by terahertz spectroscopy due to its ability to probe lattice vibrations unique to 

molecular crystals.  

Examining the Mulliken population analysis of TBX suggests that the –CHBR2 

substitution on the benzene rings results in an electron withdrawing effect creating a slightly 

positive charge on the ring. This small positive charge results in a favorable electrostatic 

interaction between the bromide and benzene rings of neighboring molecules. This interaction is 

most likely the attributing factor for the orientation of the molecules in three-dimensional space. 

The strong correlation of the optimized structure with the experimental structure resulted 

in a strong correlation of the measured and predicted terahertz spectra. The lack of strong 

interactions across unit cells led to a simplified interpretation of the vibrational motions, 

resulting in the determination of the translations along all the principle axes as well as all the 

variations of whole molecule scissoring and wagging along the crystallographic planes. 

Therefore, when a molecular crystal is held together primarily through weaker interactions, such 

as dispersion and electrostatic interactions, the resulting terahertz spectra will not be complicated 

by complex interactions across unit cells.  

6.5     Supporting Information 

 The supporting information consists of the near-Infrared vibration spectrum of TBX 

shown from 4000-400 cm-1 (Figure D-1). The supporting information also contains an ORTEP 

view of the asymmetric unit of α,α,α′,α′-tetrabromo-p-xylene, showing the partial atom-labeling 

schemes and 50% thermal ellipsoids (Figure D-2). Lastly, a graphical representation of the peak 

fitting procedure is illustrated in Figure D-3.   
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Additional material is available from the Cambridge Crystallographic Data Centre, 

CCDC No. 947074, comprises the final atomic coordinates for all atoms, thermal parameters, 

and a complete listing of bond distances and angles. Copies of this information may be obtained 

free of charge on application to The Director, 12 Union Road, Cambridge, CB2 2EZ, UK, fax: 

+44 1223 336 033, e-mail: data_request@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.  
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Chapter 7 

 

Conclusions 
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7.1     Conclusions 

 The work presented here has made a contribution to the field of interpretation of the THz 

spectroscopy of a variety of substances. These substances included organic, inorganic, and 

hybrid organometallic materials. The field of interpreting the THz spectra of molecular solids is 

still quite young; therefore, much work must be done to better understand the origins of the 

absorption in the THz region. By sampling examples of three major types of substances, this task 

has been accomplished to some degree. In addition to sampling different types of structures, 

multiple configurations of the same compound were tested. By investigating these polymorphs, 

the changes exhibited can be directly linked to differences in structure and packing and not 

inherent to composition. Nevertheless, in a couple of cases pseudo-polymorphs were investigated 

where the structures could be considered identical, although small composition differences were 

present. Changes in these systems can be directly related to composition. However, not all the 

substances tested displayed absorption in the THz region. 

 The purely inorganic set of polymorphs of VOPO4 did not have absorptions in the THz 

region due to the modes not being IR active in this region. Therefore, near-IR spectroscopy was 

utilized in its place to investigate the three polymorphs tested. In this study, the choice of basis 

set for the oxygen atoms was also studied. At the time of publication, this investigation showed 

that standard Pople basis sets do not always transfer well to periodic systems. The basis set that 

was found to be the most consistent within all the phases was one that was optimized for the use 

in periodic systems and specifically for use in CRYSTAL. This discovery lead to the use of 

mostly periodically optimized basis sets for future work as seen in the studies presented in 

Chapters 3, 5, and 6. While no insight into peak assignments in the THz region was done in this 

study, it was postulated that the similarity in the structure and spectra of the α1 and β phases, 



www.manaraa.com

205 
 

could give reason for the conversation of the α1 phase to the β phase. In addition, reasoning for 

why the α2 phase, which is only different from the α1 phase by the location of the vanadium atom 

inside the octahedral polyhedron, will not convert to the β phase is reported. 

 Another system that was investigated was α,α,α′,α′-tetrabromo-p-xylene which is an 

organic species that is mostly used as a precursor in the synthesis of poly(p-phenylenevinylene). 

This system is unique in relation to most molecular crystals, because this species is not held 

together through strong hydrogen bonding or ion-dipole type interactions. This system is held 

together through electrostatic interactions between neighboring molecules consisting of dipole-

dipole interactions between the bromines and the π orbitals from the aromatic rings. In addition 

to the THz investigation, the crystal structure for the compound was also determined, as it was 

previously unknown. This system produced a THz spectrum that could almost be considered a 

prototypical spectrum due to the clear assignment of each experimental peak. Each peak of the 

THz spectrum was composed of each possible iteration of the low energy translational motions, 

and the higher energy molecular deformations in the form of a scissoring motion was obtained 

and assigned.  

 The last set of systems was the most extensively studied in this work. This set of systems 

allowed the investigation of a whole series of compounds based on three types of polymorphs 

each centered on the same compound, the 5-monosubsituted tetrazole, 5-(4-pyridyl)tetrazole. 

The three sets included two polymorphic forms based purely on packing, a set of isomorphic 

hydrohalide salts and lastly a set of isomorphous transition metal complexes containing 5-(4-

pyridyl)tetrazole as the coordinating ligand. 

 The first set of 5-(4-pyridyl)tetrazole species is polymorphic in the traditional sense, 

because it only varies in the packing of the hydrogen-bonded chains in three-dimensional space. 
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This difference is subtle as the previously known form contains chains running parallel with each 

other, while in the newly discovered form the chains are running antiparallel. In addition to 

recording the THZ spectra, the energy of formation was determined, and it was found that the 

energy difference between the polymorphs was minimal. Additional work was conducted and it 

was found that the known phase is more stable at lower temperatures while the newly discovered 

phase was more stable at higher temperatures. The THz spectra showed a small 2 cm-1 shift in 

the frequency between the two phases. Therefore, when there are no large differences in 

crystallinity the shift in frequency is not large. However, this small difference can be attributed 

to the polymorphic forms and not experimental error because this same shift is also seen in the 

computational model. 

 The next set of compounds containing 5-(4-pyridyl)tetrazole can be considered pseudo-

polymorphic since both are hydrohalide salts of 5-(4-pyridyl)tetrazole. The hydrohalide salts 

have nearly identical structures with the bromine salt having a slightly expanded unit cell due to 

the increased size of the anion. This study examined what effect the halide would have on the 

THz spectra. It was found that the mass of the halide atom had an overall effect similar to that 

exhibited in the infrared region of the EM spectrum. The increased mass of the bromide results 

in a red shift in the frequency positions. Therefore, extending these findings to similar 

compounds, a similar shift in the THz spectra should be observed proportional to the mass 

difference when there is only a mass difference and no packing or conformational differences. 

 The last sets of compounds were based on transition metal complexes containing 5-(4-

pyridyl)tetrazole. Three isomorphous complexes of the form [M(C6H4N5)2(H2O)4]·2H2O (M = 

Mn, Cd, Co) were tested to study what effect the mass and size of the transition metal has on the 

THz spectra of these compounds. This set of systems led to a new issue that was not seen in any 
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of the other systems tested in this work. In the previous work there was no ambiguity in the 

arrangement of the electrons in the orbitals of the atoms; however, the inclusion of transition 

metals with unfilled d orbitals led to an issue with the accuracy of the simulations. These systems 

could not be treated like the others, and it was not until the electrons spins were allowed to 

fluctuate that a solution could be found. The other issue was that the spin states of these 

complexes were not known. Through the course of the investigation, it was found that both the 

manganese and cobalt complexes were in fact high spin, which required special treatment of 

these atoms in the simulations. The cadmium had no such issues due to it having a filled d 

orbital. Once this issue with spin was taken into account, the simulation produced very good 

agreements with the experimentally obtained crystal structure and THz spectra. A clear trend was 

found that was indeed mass dependent, comparable to that seen in the investigation of the 

hydrohalide salts of 5-(4-pyridyl)tetrazole. However, the size of the transition metal also played 

an important role when the normal modes involved motions associated with the metal. 

 In this instance, the bond strength of the metal with the ligand was more important than 

the mass. Due to the smaller size of the cobalt, the bond strength between the metal and the 

nitrogen was increased and produced a shift opposite to what would be expected based purely on 

mass, compared to the manganese complex, which has a larger ionic radius. To reiterate, this 

effect was only seen when observing motions directly linked to the metal center; otherwise, 

standard mass related shifts were seen. This system presented a unique set of complexes that are 

not commonly investigated in the study of molecular crystals. The addition of transition metals 

with unfilled d orbitals added complications to an otherwise simple system. However, a set of 

conditions were developed which could be applied to similar systems in the future. This could 
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potentially be very useful in the investigation of the large number of molecular solids found in 

the field of hybrid metal-organic chemistry. 

 The research that was conducted spanned a wide range of issues. Some of these included 

fundamental methodologies in the classification and interpretation of a set of compounds that is 

rarely investigated due to their inherent complexity. In addition, all the sets of polymorphs tested 

only had minor structural or compositional changes. When there were compositional differences, 

a large change was found in the spectra, which is ideal for distinguishing halides or transition 

metals using THZ spectroscopy, especially if the system is not previously known. However, 

when there is only a small rearrangement in space the effect is much more subtle. Nevertheless, 

THz spectroscopy was able to distinguish the systems and the computational methods produced 

assignments that agreed with those experimentally observed.  

 In addition to the collection and interpretation of THz spectra, this work also illustrated 

the use of a computational method that is suitable for the study or a wide range of crystalline 

solids. The methods applied in CRYSTAL09 have proven to be a valuable tool in the 

interpretation of the absorption in THz active compounds. Along with it use to predict 

vibrational spectra, CRYSTAL09 can also be used to predict more complicated systems and 

predict other useful properties such as magnetism and surface absorption which could be applied 

to other work that is being conducted in the Zubieta research group. 
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APPENDIX A. Chapter 3 Supporting Information 

 

Contents: 

Figure A-1  ORTEP view of the building unit of α form of 5-(4-pyridyl)tetrazole, showing the 

partial atom-labeling scheme and 50% thermal ellipsoids. 

Figure A-2  ORTEP view of the building unit of β form of 5-(4-pyridyl)tetrazole, showing the 

partial atom-labeling scheme and 50% thermal ellipsoids. 

Figure A-3  The room temperature (298K) experimental and theoretical traces for the terahertz 

spectra of the A) α and B) β forms of 5-(4-pyridyl)tetrazole shown from 10-95 

cm-1. An empirical 3.0 cm-1 and 6.0 cm-1 full-width-half-maximum Lorentzian 

line shape has been applied to the theoretical data of the α and β forms of 5-(4-

pyridyl)tetrazole, respectively, to aid in comparison. 

Figure A-4  Normalized near-infrared vibration spectra of the α and β forms of 5-(4-

pyridyl)tetrazole shown from 4000-400 cm-1 

 

. 
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Figure A-1  ORTEP view of the building unit of α form of 5-(4-pyridyl)tetrazole, showing the 

partial atom-labeling scheme and 50% thermal ellipsoids. 
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Figure A-2  ORTEP view of the building unit of β form of 5-(4-pyridyl)tetrazole, showing the 

partial atom-labeling scheme and 50% thermal ellipsoids. 
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Figure A-3  The room temperature (298K) experimental and theoretical traces for the terahertz 

spectra of the A) α and B) β forms of 5-(4-pyridyl)tetrazole shown from 10-95 

cm-1. An empirical 3.0 cm-1 and 6.0 cm-1 full-width-half-maximum Lorentzian 

line shape has been applied to the theoretical data of the α and β forms of 5-(4-

pyridyl)tetrazole, respectively, to aid in comparison. 
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Figure A-4  Normalized near-infrared vibration spectra of the α and β forms of 5-(4-

pyridyl)tetrazole shown from 4000-400 cm-1 
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APPENDIX B. Chapter 4 Supporting Information 

 

Contents: 

Figure B-1  Near-Infrared vibration spectral overlay of 4-PT·HCl and 4-PT·HBr shown from 

4000-400 cm-1 

Figure B-2  The experimental and theoretical traces for the terahertz spectra of 4-(1H-

Tetrazol-5-yl)pyridinium chloride (4-PT·HCl). The frequency positions have been 

reduced to be 90% of the original value. An empirical 3.0 cm-1 full-width-half-

maximum Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. 

Figure B-3  ORTEP view of the building unit of 4PT·HCl, showing the partial atom-labeling 

scheme and 50% thermal ellipsoids. 

Figure B-4  ORTEP view of the building unit of 4PT·HBr, showing the partial atom-labeling 

scheme and 50% thermal ellipsoids. 

Table B-1  Frequency positions (cm-1) and RMSD for the experimental and theoretical 

terahertz spectra of 4PT ·  HCl. The frequency positions have been reduced to be 

90% of the original value. The blanks are peaks that have no obvious correlation 

between the room temperature and cryogenic experimental spectra. When 

multiple peaks corresponded to only one peak in the experimental spectra, the 

weighted average was used in calculating the RMSD. Mode descriptions are 

described in Table 4.5. 
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Figure B-1  Near-Infrared vibration spectra of 4-PT·HCl and 4-PT·HBr shown from 4000-400 

cm-1 
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. 

 

Figure B-2  The experimental and theoretical traces for the terahertz spectra of 4-(1H-

Tetrazol-5-yl)pyridinium chloride (4-PT·HCl). The frequency positions have been 

reduced to be 90% of the original value. An empirical 3.0 cm-1 full-width-half-

maximum Lorentzian line shape has been applied to the theoretical data to aid in 

comparison. 
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Figure B-3  ORTEP view of 4PT·HCl, showing the atom-labeling scheme and 50% thermal 

ellipsoids. 
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Figure B-4  ORTEP view of 4PT · HBr, showing the atom-labeling scheme and 50% thermal 

ellipsoids. 
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Table B-1  Frequency positions (cm-1) and RMSD for the experimental and theoretical 

terahertz spectra of 4PT·HCl. The frequency positions have been reduced to be 

90% of the original value. The blanks are peaks that have no obvious correlation 

between the room temperature and cryogenic experimental spectra. When 

multiple peaks corresponded to only one peak in the experimental spectra, the 

weighted average was used in calculating the RMSD. Mode descriptions are 

described in Table 4.5. 

 

Mode Exp. (78K) Exp. (293K) Theoretical Intensity (ε) 

a 42.89 40.65 47.44 0.07 
b 59.46 56.21 59.87 0.79 
c 68.59 --- 64.78 0.03 
d 

77.89 74.54 
77.04 12.15 

e 77.66 2.14 
f 

93.27 86.72 
82.03 0.81 

g 94.95 50.63 
h --- 98.07 100.28 8.75 

  RMSD 2.761 
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APPENDIX C. Chapter 5 Supporting Information 

 

Contents: 

Figure C-1  ORTEP view of compound Co-4PT, showing the atom-labeling scheme and 50% 

thermal ellipsoids. 
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Figure C-1  ORTEP view of compound Co-4PT, showing the atom-labeling scheme and 50% 

thermal ellipsoids. 
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APPENDIX D. Chapter 6 Supporting Information 

 

Contents: 

Figure D-1  Infrared spectrum for the compound of this study.  

Figure D-2  ORTEP view of the building unit of the compound of this study, showing the 

partial atom-labeling schemes and 50% thermal ellipsoids. 

Figure D-3 Decomposition of the peaks based on the Lorentzian multi-peak fitting of the 

spectral features displaying maximums at A) ~36 cm-1 and B) ~49 cm-1. 
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Figure D-1  Infrared spectra for α,α,α′,α′-Tetrabromo-p-xylene. 
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Figure D-2  ORTEP view of compound α,α,α′,α′-Tetrabromo-p-xylene, showing the atom-

labeling scheme and 50% thermal ellipsoids. 
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Figure D-3  Decomposition of the peaks based on the Lorentzian multi-peak fitting of the 

spectral features displaying maximums at A) ~36 cm-1 and B) ~49cm-1. 
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